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The synthesis of epoxy monomers with mesogenic groups
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Summary — A two-step synthesis was developed to prepare new types of
diepoxy and diolefinic liquid crystalline (LC) monomers. The synthesis in-
volved (i) esterification of 4-hydroxyphenyl-4-hydroxybenzoate or
4’,4'-biphenol (I) with 4-pentenoic acid (II); (ii) epoxidation of the resulting
diolefins with mi-chloroperoxybenzoic acid. The structure of the resulting
products was confirmed in terms of FTIR and 'H NMR spectra. A hot-stage
polarizing microscope showed mesophases to occur in the monomers 2b, 3a
and 3b (cf. scheme of reaction 1), but not in the product of esterification of I
with II. Differential scanning calorimetry and thermooptical analysis were
used to determine {crystal to mesomorphic (LC), and LC to isotropic) phase
transition temperatures (Table 1, Fig. 1).
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The first reports predicting the properties of liquid-
-crystalline polymer networks (LCPN) were published
in the late 1960s and early 1970s [1, 2]. The LCPNs pre-
pared since then indeed revealed certain unique proper-
ties such as excellent shape memory, high capacity in
accommodating mechanical energy [3], different light
polarization at varying deformations [4], and piezo- and
pyroelectric properties [5]. All these properties prede-
stine LCPNs as high-tech materials for various branches
of electronics, aviation and space industry, as coatings
of very high impact resistance [6] or as self-reinforcing
composite materials [7].

Amongst various anisotropic polymer networks, the
epoxy resins obtained from liquid-crystalline monomers
constitute an interesting group. They have a very high
mechanical strength including the resistance against
brittle crack as well as a high chemical thermal stability.
These LCPNs can be used as a supporting material in
composites applied for optical purposes, data storage
systems and as wave-guides. The epoxy resins of this
type are also used as the matrices for the polymer di-
spersed liquid crystals (PDLC); micron-sized droplets of
a liquid-crystalline substance are suspended in a trans-
parent matrix. PDLC are used as wave-guides, filters,
shutters, architectural glasses, displays, windows, elc.

[8].
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The liquid crystalline epoxy networks are obtained
mainly by cross-linking the epoxy resin capable of gene-
rating a mesophase. They usually have a relatively low
viscosity. The monomers are synthesized by reacting (i)
mesogenic phenols having two hydroxyl groups with
epichlorohydrin {7, 9, 10—13], (ii) mesogenic acids or
acid halides with glycidyl alcohols [14], or (iii) by epoxi-
dation of appropriate diolefins [15—19]. The methods
(i) and (ii) most often lead to mixtures of products con-
taining substantial proportions of oligomeric homologs,
similarly as in the synthesis of classical epoxy resins [7,
11, 12, 14]. Method (iii), although requiring a multistage
synthesis, allows to purify the final product containing
high proportions of individual species. A high degree of
orientation of the mesogenic groups in the resins provi-
des the cross-linking carried out in a magnetic or elec-
tric field or on a substrate providing a mechanical
orientation along a selected direction [8].

In this work, we present a method of synthesis of
new types of diepoxy and diolefinic liquid crystalline
monomers.

EXPERIMENTAL

Instrumentation

The structure of products was confirmed by 'H NMR
and FTIR spectroscopy, by using a Tesla BS 587 A 80 Hz
spectrometer and a PARAGON 1000 FTIR spectrometer,
respectively. Thermal studies were carried out by diffe-
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rential scanning calorimetry (DSC). Measurements were
carried out a rate of 10°C/min in a 990-TA Instruments
2100 calorimeter (Du Pont) by using the TA Instruments
Universal V2,6 D software. Thermooptical analysis
(TOA) was performed with a polarizing microscope
equipped with a Mettler FP-82 measuring cell.

The changes in birefringence of the sample with tem-
perature were measured by monitoring the changes in
relative transmission of polarized light, I+/I, where I} is
the transmission of the sample placed between crossed
polarizes at given temperature and I, is the transmis-
sion of a sample at room temperature.

The texture of mesophases was observed by using an
E-211 polarizing microscope equipped with a hot stage.
Pictures were registered by a VHS Panasonic video ca-
mera, model NV-R50E, connected to an ASSUS 266
MHz graphic card in a computer.

Starting materials

All the chemicals used were analytical-grade com-
mercial products (Aldrich, Fluka, Merck) and were used
without further purification.

Synthesis

4-Hydroxyphenyl-4-hydroxybenzoate used in the
synthesis was obtained by esterification of 4-hydroxy-
benzoic acid with hydroquinone by applying a proce-
dure similar to that described in [20]. 4-Pentenoic acid
was obtained in the so-called malonic synthesis descri-
bed, e.g., by Bochwic [21]:

(0]
1l
2 CH,=CH—(CHy),— C-OH + HO-R-OH
DCC, DMAP
CH,Cl,, room temp.
? 7
Clly=CH~ (CH,);— C- O-R- O- C—(CH,),~ CH=CH,
MCPBA 2
CH,Cl,, 39°C
? 0
CH-—CH~-(CH;),—C-0-R-0-C—(CH;),— CH-CH
Ha (CHay), \ (CHay), \0/ 2

Esterification

To 0.1 mol (1.86 g) of 4,4"-biphenol or 4-hydroxyphe-
nyl-4-hydroxybenzoate (2.3 g), 0.02 mol (2.0 g) of 4-pen-
tenoic acid in 100 cm® of dry dichloromethane, 0.022
mol (4.54 g) of N,N-dicyclohexylcarbodiimide (DCC),
and a catalytic amount (8 - 10™ mol, 0.0977 g) of 4-di-

methylaminopyridine (DMAP) were added. The reac-
tion mixture was stirred for 24 h, then N,N-dicyclohexyl-
urea (DHU) was filtered off and, after removal of the
solvent, crude product was crystallized from methanol
(2a) or isopropanol (2b). Yields 67% of 2a, 54% of 2b.

2a: '"H NMR (CDCL,), § (ppm), 25 (8H, m, (CH,),),
5.05 (4H, m, =CH,), 5.85 (2H, m, CH), 7.15 (4H, d, aro-
matic), 7.6 (4H, d, aromatic).

FTIR (KBr), v (cm™), 3083, 1601—1448, 1007 (aroma-
tic), 3000—2855, 1419—1373 (CH,), 1643 (C=C,;.), 1754,
1745 (C=0), 1218, 1169—1151 (C-O).

2b: '"H NMR (CDCly), § (ppm), 2.5 (8H, m, (CH,),),
5.05 (4H, m, =CH,), 5.85 (2H, m, CH), 7.2 (6H, m, aro-
matic), 8.15 (2H, d, aromatic).

FTIR (KBr), v (cm™), 3109—3082, 1605—1448, 1018
(aromatic), 3001—2856, 1415—1373 (CH,), 1643 (C=C,,1,),
1746, 1732 (C=0), 1287—1189, 1081, 1166 (C-O).

Epoxidation

Under continuous stirring, 5.42 g (0.022 mol, 70%) of
m-chloroperoxybenzoic acid (MCPBA) was added to a
solution of 0.01 mol of the diolefin (3.5 g of 2aor 3.94 g
of 2b) in 80 cm® of dichloromethane. The mixture was
refluxed for 48 h. After cooling and subsequent filtra-
tion, the mixture was washed with 80 cm® of aqueous
5% Na,SO,, 80 cm® of aqueous 5% NaHCO,, and 50 cm®
of aqueous 30% NaCl. The dichloromethane layer was
dried over MgSO, and evaporated. Recrystallization
from methanol (3a) or isopropanol (3b) yielded the final
products.

Yields: 57% of 3a, epoxy number (EN) = 0.520 (calc.
0.524), 63% of 3b EN = 0.463 (calc. 0.469).

3a: '"H NMR (CDCl,), & (ppm), 1.9 (4H, m, CH,), 2.55
(4H, m, CH,), 2.7 (4H, m, CH, of epoxy), 3.0 (2H, m, CH
of epoxy), 7.1 (4H, d, aromatic), 7.5 (4H, d, aromatic).

FTIR (KBr), v (cm™), 3083, 1601—1443, 1006 (aroma-
tic), 3000—2855, 1419—1373 (CH,), 1752 (C=0), 1207,
1169—1141 (C-0), 839 (epoxide).

3b: '"H NMR (CDCL,), § (ppm), 1.9 (4H, m, CH,), 2.55
(4H, m, CH,), 2.75 (4H, m, CH, of epoxy), 3.0 (2H, m,
CH of epoxy), 7.2 (6H, m, aromatic), 8.2 (2H, d, aromatic).

FTIR (KBr), v (cm™), 3110—3071, 1603—1440, 1016
(aromatic), 2996—2929, 1414—1373 (CH,), 1756, 1732
(C=0), 1276—1183, 1163—1143, 1075 (C-O), 854—841
(epoxide).

The texture of the products was observed in a polari-
zing microscope equipped with a hot stage. The obse-
rvations confirmed the appearance of mesophases in 2b,
3a, and 3b both upon heating and cooling. No me-
sophase was observed in the product of esterification of
4,4’-biphenol with 4-pentenocic acid. The exact phase
transition temperatures were determined by DSC and
TOA. Illustrative results for just one monomer, 3b, are
shown in Fig. 1 (DSC) and 2 (TOA). The ratio of the in-
tensity of transmitted light I; at a given temperature to
that at room temperature, IO, is plotted against tempera-
ture. The temperature of transition from the crystalline
to mesomorphic (liquid crystalline) T,, and from the me-
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05 were made in the heating or the cooling mode. The
phase transition temperatures determined by the two
methods are listed in Table 1.
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Fig. 1. The DSC thermogram recorded for monomer 3b;
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from liquid crystalline to isotropic state are indicated
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Fig. 2. Relative light transmission I;/l, under crossed polari-
zers plotted against temperature (TOA plot) for monomer 3b

Table 1. Phase transition temperatures for liquid crystalline
divinyl and epoxy monomers synthesized in this work; T,, — melting
temperature (including transition from solid to liquid-crystalline sta-

te), T, — isotropization temperature
T,, at heating T, at heating
Monomer (T,, at cooling), “C (T; at cooling), "C
2a¥ — 125 (123.5)
2b 82.5 (73.5) 116.5 (113.5)
3a 102.5 (101.5) 113.0 (112.5)
3b 78.0 (57.0) 1155 (111.5)

* No mesophase observed.

somorphic to isotropic state T; is well seen in the plot.
Slight differences in the transition temperatures were
found to occur depending on whether the measurements
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