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Contraction (shrinkage) in polymerization

Part I. FUNDAMENTALS AND MEASUREMENTS

Summary — A review with 58 references covering the areas of shrinkage 
importance and mechanisms of shrinkage formation, shrinkage types (li
near and volumetric) and interrelations, shrinkage measuring methods, viz., 
static, dynamic, dilatometric, and linometric, laser linear shrinkage mea
surements, laser scan micrometry, laser interferometry, linear shrinkage 
measurements of single strands in stereolithography, and dynamic and 
thermal mechanical analyzer methods.
Key words: polymerization shrinkage, linear and volumetric shrinkage and 
interrelations, areas of shrinkage importance, shrinkage measuring methods.

Polymerization shrinkage (contraction) is of great im
portance in:

— Studies on the kinetics of polymerization [1—3].
— Coatings [4, 5]: stresses and consequent defects 

(buckling, cracking, curling and delamination) caused 
by shrinkage, limit coating's performance and quality.

— Manufacturing of aspheric lenses, waveguides, 
gratings and optical fiber coatings; a typical aspheric 
lens requires a shape accuracy better than 0.1 pm and a 
surface roughness of less than 0.02 pm [6 ].

— Stereolithography [7—10].
— Surgical adhesives [13].
— Photocuring of dental restorative resins.

SHRINKAGE FORMATION MECHANISM

There are various causes to shrinkage that occurs du
ring polymerization [12]:

— One major factor is that monomer molecules are 
located at Van der Waals distances (about 3.4 A) from 
one another, whereas in the corresponding polymer the 
(mono)mer units have moved to within a covalent ra
dius which is approximately 1/3 of the Van der Waals 
radius (1.34 A). This causes a shrinkage that is roughly 
related to the number of (mono)mer units per unit volu
me that is converted to polymer.

— Change in entropy and in the relative free volumes 
of the monomer and polymer. Free volume is primarily
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determined by the packing efficiency of macromolecu
les. For example, crystalline (and to some extent se
micrystalline) polymers are more closely packed than 
the corresponding amorphous polymers. Thus, crystalli
ne monomers will shrink less than non-crystalline (li
quid) monomers. In the case of methacrylate mono
mers, it is impossible to avoid shrinkage, which ranges 
up to 10—16% by volume.

All monofunctional vinyl containing monomers show 
similar bond changes during polymerization. However, 
their shrinkage values vary significantly with the mole
cular weight, elemental composition, and physical state 
(liquid, solid, crystalline or amorphous) of individual 
monomers (Table 1) [13, 14].

T a b l e  1. Shrinkage data for various monomers [11]

Monomer
Density at 20"C, g/cc Shrinkage 

S„, '7nmonomer polymer

Ethylene 0.566* **)’ 0.920 66.00
Vinyl chloride 0.919 1.406 34.63
Vinyl bromide 1.512 2.075 27.13
Vinylidene chloride 1.220 1.710 28.65
Vinylidene bromide 2.178 3.053 28.66
Acrylonitrile 0.797 1.170 31.88
Methacrylonitrile 0.800 1.100 27.27
Vinyl acetate 0.932 1.190 21.68
Methyl methacrylate 0.940 1.190 21.01
Ethyl methacrylate 0.911 1.110 17.93
n-Propyl methacrylate 0.902 1.060 14.91
H-Butyl methacrylate 0.889 1.050 15.33
Styrene 0.907 1.059 14.31
Diallyl phthalate 1.175 1.270 7.48
N-Vinylcarbazole 1.110 1.200 7.50
l-Vinylpyrene 1.160 1.230 5.68
Diallyl phthalate prepolymer 1.230 1.270 3.15

*’ Al -102‘t .



POLIMERY 2001, 46, nr 7—8 523

Photopolymerization (photocuring) of multifunctio
nal monomers involves complex processes. In the early 
photocuring period, branched microgel centers are for
med, and the crosslinked network of resin components 
is relatively weak [1—3]. The propagating chains can 
still flow in the monomer solution and can slide into 
different positions and assume various orientations in 
the growing network. At the gel point, the viscous flow 
of the resin is no longer possible. Therefore, polymer 
contraction (shrinkage) depends on the flowability of 
the photocured material. These photocuring process can 
influence the stress that is being generated. As the pho
tocuring process proceeds, contraction and flow pro
gressively decrease, whereas the resin composite stif
fness increases. As a result, the stress begins to grow 
and can cause adhesion failure.

Linear and volumetric shrinkages

where w is the weight of the cured material, d0 and d, arc 
densities o f uncured (monomer) and cured (polymer) mate
rials in time (t), respectively.

Liquid densities can be determined with a 1-ml pyc
nometer to within a precision ±0 .1%, whereas solid den
sities can be measured by the water displacement me
thod (hydrostatic weighing technique) on 1- to 2-g sam
ples with a weighing precision of ±0.1 mg. The volume
tric shrinkage (Sv) can be calculated as [27]

S„ =
dT

■ 100% (6)

The density of water at a desired temperature (dT) can 
be found in the literature [28] or evaluated from the fol
lowing equation [29]:

dT 9 9 9 .9 7 2

1 +  0.01/c, (Г -  3 .9 8 2 ) '

(kg’ m -3) (7)

The linear polymerization shrinkage (SL) can be calcu
lated as

SL = - ^ - . 1 0 0 %  (1)
1+ A l

where Al is the recorded displacement and l the thickness of 
the sample after polymerization.

The SL can be converted to volumetric shrinkage (Sv) 
(with contractions assumed to be isotropical in all x, у 
and z directions) by the following mathematical 
expression, in which the relative volumetric contraction 
is described as the difference between the relative volu
mes of a cube before and after contraction [15, 16]:

Sv = ? - ( l - S Lf= 3 S L-3Sl + Sl (2)

METHODS TO MEASURE THE POLYMERIZATION 
SHRINKAGE (CONTRACTION)

A number of static and dynamic methods have been 
developed for measuring the polymerization shrinkage.

Static methods

Static methods are based on measuring the densities 
by methods such as pycnometry and hydrostatic sus
pension [17—26]. The volume shrinkage (Sv) can be cal
culated by the following equation [17, 21, 23—27]:

Sv = V°~ V' - 1 0 0 %  (3)

where V0 and V, are specific volumes of uncured and cured 
materials in time (t).

They can be determined as

II
=*

•1
3

(4)

W

v' - 7 (5)

where T is water temperature, °C; and /с, = -1.89173965 -10 е, 
k, = 0.080064627, k3 = -0.0866561397, k4 = 0.141326458, /с, 
= -0.227709811, k6 = 0.305765045, k7 = -0.292859639, k$ =
0.17991657, kef = -0.0625693644, kw = 0.00930376776 (the 
use o f a programmable calculator is advisable).

Dynamic methods

A number of dynamic methods have been developed 
to measure shrinkage, viz.,

1 . Dilatometric measurements of volumetric changes 
[17, 18, 20—24, 30, 31].

2 . Measurements of linear dimensional changes in a 
thin sample sandwiched between two substrates [15,16, 
30, 32—34].

3. Laser linear shrinkage measurements [9].
4. Laser scan micrometry [35, 36].
5. Laser interferometry [6 ].
6 . Laser measurements of single strands [37].
7. Dynamic (and thermal) mechanical analyzer modi

fied for optical access [38, 39].
In general, the volumetric determinations of curing 

shrinkage are basically "free shrinkage" measurements 
and therefore they involve the total (pre- and post-gel) 
curing contraction, whereas the dimensionless changes 
in linear curing contraction determinations are more or 
less "hindered shrinkage" and therefore should be re
garded as a post-gel curing phenomenon. For that rea
son, the various linear shrinkage determinations are 
often inconsistent.

Dilatometric methods

The volumetric curing shrinkage (Sv) can be measu
red in the simplest way by using a common NMR tube 
[11]. In a typical experiment, approximately 1 mL of 
a reacting sample is placed in the tube. The change of 
height of the sample in the tube can be recorded with a 
cathetometer.
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A number of devices for determining the volumetric 
curing shrinkage (Sv) have been reported, most of them 
based on a mercury dilatometer [17, 30, 40—47] or a 
water dilatometer [19, 31, 43, 44]. There are two main 
types of dilatometers: the capillary type [45—50] and 
the plunger type [47, 51—53]. Dilatometry is laborious 
and time-consuming and is burdened with data disper
sion when used in the low viscosity region. Many other 
problems exist in using a dilatometer, such as tempera
ture control and viscosity interference. A recording dila
tometer for measuring polymerization shrinkage is 
shown in Fig. 1 [41]. Volume changes are monitored by 
measuring the height of the mercury column in the ver
tical portion of the U-tube by means of a linear variable 
differential transformer (LVDT). Fig. 2. A schematic diagram o f the linometer [15]

Fig. 1. A schematic diagram o f the dilatometer [41]

By assuming the volume shrinkage to vary linearly 
with monomer conversion, the rate of polymerization 
(R);) is expressed in dilatometric studies as [50, 54]

* „ = -' V„

1 1 MAt (8)

where AV is the volume change, V0 is the initial volume, d0 
and d, are the densities of uncured (monomer) and cured 
(polymer) material in time (t), respectively, M is the molecu
lar weight o f the monomer and At is the reaction time.

Linometric methods

Linear polymerization shrinkage can be measured 
with a "linometer" device that contains a calibrated 
contactless displacement measuring system, an LVDT 
transducer (Fig. 2) [15, 32, 38]. The liquid unpolymeri
zed sample is placed between an aluminum disc and a 
glass cover. Light is switched on and an LVDT trandu- 
cer measures the vertical displacement of the aluminum 
disc due to contraction of the sample. The output signal 
of the measuring system is recorded by a computer. II-

Fig. 3. Kinetic shrinkage curves measured with a linometer 
[15]

lustrative kinetic shrinkage curves ascertained with the 
linometer are shown in Fig. 3. A drawback to this me
thod is that, in this sample configuration, stresses will 
inevitably build up in the polymer layer, notably when 
the system vitrifies. This will affect the result of a shrin
kage measurement.

Laser linear shrinkage measurements

The principle of the experimental equipment is 
shown in Fig. 4 [9]. The photocurable resin is placed in 
a vat. An Ar ion laser is used to scan the gap (10 mm) 
between an immobile and a mobile target. The move
ment of the mobile target suspended on a fine nylon 
line is detected with a laser displacement sensor equip
ped with the data accumulation system.

Laser scan micrometer method

This is a non-contact measuring method of a very 
high accuracy, ±1 pm [35, 36, 55]. A scanning laser beam
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Laser projector Nylon ljne

Fig. 4. Laser equipment to measure linear shrinkage [9] 

Polygon mirror FO lens Sample Condenser lens

is cast over the sample (» 10—20 mg, 2—4 mm long, <8 
mm in diameter) and its length is determined by me
asuring the amount of time the specimen obstructs the 
beam (Fig. 5). The He-Ne laser beam is reflected by a ro
tating polygon mirror and then collimated by a lens 
that creates a parallel light flux which scans the speci
men. Then, the scanning beam passes through a con
denser lens onto a photoelectric element and generates 
a voltage which corresponds to the intensity of the 
light. This voltage allows the number of pulses genera
ted to be counted while the beam is being obstructed by 
the specimen. The number of pulses, which are provi
ded by a clock pulse and totalled by a counter, is pro
portional to the length of the specimen.

Laser interferometry method

This method is extremely sensitive and can easily de
tect changes as small as 10 nm [6 ]. A He-Ne laser beam 
is used to measure changes in the optical path length of 
a photocured sample upon irradiation, by using interfe
rence of the light reflected at the top and at the bottom 
of the curable layer (Fig. 6).

The advantage of this method is that it allows to mea
sure the change in the amplitude of the signal due to 
the increase in the refractive index of the photocured 
sample. The change in refractive index (nt) upon poly
merization at time (f) is caused by a change in polariza
bility (a,) of the sample at time (t). According to the Lo- 
renz-Lorentz equation, the molar refraction ( R l l ) varies 
proportionally with a:

Г o f - i ) l f  j xAM 4 n N A a :

Lof+2)J 4 ^1 , 3
(9)

He-Ne laser

Fig. 6 . The laser interferometer for measuring volume shrin
kage [6]

where: M is the molecular weight o f the monomer, d, is the 
density at time (t) and N„ is Avogadro's number.

Tire change in polarizability (a,) during polymeriza
tion is due to:

— Conversion of double bonds to single bonds, 
which decreases a,.

— Shrinkage: the density will increase and thus a, 
will increase.

If polarizability (a,) is assumed to be directly related 
to the degree of double bond conversion (pt) (determin
ed in photo-DSC measurements) at time (t), a f can be 
represented by the following equation [6 ]:

a, , + Pi (a,.
1-S,V ( t )

(10)

where: a„, and a r arc the polarizabilities o f monomer and 
polymer, respectively, and Svl0 is the volume shrinkage at 
time (t).

Measurement of the reflected laser light intensity al
lows to calculate the refractive index, shrinkage and
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Fig. 7. The relationship between shrinkage (Sv) and double 
bond conversion (p,) during photopolymerization of bis(2 -hy- 
droxyethyDbisphenol A dimethacrylate [6]

Laser beam

(Free end)

Fig. 9. The definition o f measured linear shrinkage (SUI)) at 
time (t) o f a single strand [37]

The volume shrinkage (Sv(o) of a single strand at time 
(f) is given as [37]:

SV(I) ~ ~fc— Y + s„(t+//v)

8t )

( 12)

conversion during photopolymerization. The relation
ship between shrinkage (Sv) and double bond conver
sion (pt) during photopolymerization is shown in Fig. 7.

Linear shrinkage measurements of single strands in 
3D photopolym erization (stereolithography)

The principle of the experimental equipment is 
shown in Fig. 8 [35]. After a laser beam starts from a 
fixed end, it reaches a free end and the single strand of

Fig. 8 . An experimental setup for single strand measure
ments [37]

cured resin combines the fixed with the free end, respec
tively. A non-contact eddy current sensor is used to me
asure the displacement of a ferromagnetic needle that 
connects the free end of a single strand. For tracking the 
beam position and the measuring time, a photo sensor is 
used to detect the laser traverse during laser scan
ning. Linear shrinkage (Sf) values is obtained to divide 
a displacement by the set distance, which is defined as a 
distance between the fixed and the free end (Fig. 9).

The linear shrinkage (SL̂ ) of a single strand at time 
(f) is given as [37]:

su o = £ W t+ * v)dx (n )

where v is the scan speed and x is the path length.

Dynamic (and thermal) mechanical analyzer method

Polymerization shrinkage can be measured by using a 
dynamic mechanical analyzer (DMA) modified for opti-

Fig. 10. The thermo-mechanical analyzer (TMA) method for 
measuring shrinkage: (a) sample sandwich in cross section; 
(b) disassembled sandwich; and (c) modified TMA instru
ment [38]



POLIMERY 2001, 46, nr 7—8 527

cal access [39]. In the dynamie mode using a probe tip 
with an oscillating frequency, the entire photoinduced 
polymerization reaction can be followed with a real 
time monitor of shrinkage, sample viscosity or modules 
[56]. Alternatively, using the thermo-mechanical analy
zer (TMA) mode for samples enclosed between glass 
plates, the probe rests on the top glass plate during the 
photoreaction and provides an accurate measure of the 
sample thickness perpendicular to glass plates (Fig. 10) 
[32, 38, 39]. The overall change in the height is a direct 
measure of the dimensional change normal to the opti
cal axis (transverse shrinkage). The static method is 
most useful for evaluating shrinkage in photopolymers 
since this experiment can utilize the sample in either an 
unreacted or precured state. This approach can be ap
plied to samples exhibiting a very large (>10%) or a 
very small (<0.1%) shrinkage [39].

DETERMINATION OF MONOMER CONVERSION DEGREE 
FROM VOLUMETRIC SHRINKAGE

The degree of double bond conversion (pi) can be esti
mated from the volumetric conversion (Sv) by using the 
following equation [16, 50, 57]

Pi =
Sy

do &Vmcf
(13)

where: d0 is the density of uncurcd monomer, AVm is the mo
lar volume contraction associated with the polymerization of a 
mole o f double bonds at full conversion (AVm = 22.5 mL/mol 
for all methacrylates [18, 57, 58]), c is the monomer concen
tration and f  is the number o f double bonds in the monomer 
molecule.

In the case of copolymerization, p, is given as [57, 58]:

Pi =
Sy

d ,A V JL  C-J;
(14)

where: d, are the densities of the i-monomer mixtures calcula
ted from the densities of the individual components, Y.cf is 
the summation over all concentrations of the i-monomers in 
the sample (mol/kg) multiplied by the number of double bonds 
per molecule.

End note: This article has been written by Dr. Julita Ja
kubiak, Head of an International Joint Project "Mechanisms, 
kinetics and applications of photopolymerization initiated by 
visible light photoinitiators", supervised by Prof. J. F. Rabek. 
Dr. J. Jakubiak spent one year (1998/1999) as post-doc re
searcher at the Polymer Research Group, Department of 
Dental Biomateriał Science, Karolińska Institute, The Royal 
Academy of Medicine, Stockholm, Sweden (directed by Prof.
L. A. Linden and Prof. J. F. Rabek) and one year 
(1999/2000) as post-doc researcher at the Laboratoire de 
Photochimie Generale, CNRS, University o f Mulhouse, 
France (directed by Prof. J. P. Fouassier).
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