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A Monte Carlo model of hyperbranched polymerization

RAPID COMMUNICATION

Summary — A Monte Carlo computer model of is described for 
hyperbranched polymerization involving AB2 monomers. Tire structure of al­
gorithm used in the model and selected results of its application are pre­
sented. The results are compared with those obtained by using an analytical 
kinetic model. For analogous polymerization systems, the two models were 
found to yield identical molecular parameters, viz., the average degrees of 
polymerization as the degree of conversion was varied, and polydispersity 
index for the reacting systems involving different substitution effects.
Key words: Monte Carlo modeling, hyperbranched polymers, size distribu­
tion, polymerization degree.

A considerable interest in highly branched polymers 
forming non-gelling systems has been observed in the 
recent fifteen years [1, 2]. Two groups of such polymers 
have been studied most widely. These are dendrimers,
i.e., highly branched, nearly monodisperse oligomers 
obtained in sophisticated multistage processes [3] and 
hyperbranched polymers obtained in one-pot reactions. 
The latter are much easier to prepare than dendrimers 
by e.g., homopolymerization of AB2 monomers, but the 
products are polydisperse both with respect to the size 
of molecules and to their structure. Symbols A and В 
stand for functional groups that react with each other in 
elementary growth reactions. Since the pioneering 
works of Flory [4] published nearly 50 years ago, the 
theory of polymerization of AB2 monomers has not at­
tracted much attention until very recently (c/., eg., 
[5—8]). In our theoretical work, we concentrate on the 
study on an influence of variations in the reactivity of 
functional groups, known as the first shell substitution 
effect [9, 10], on the size distribution of hyperbranched 
polymers obtained by polymerization of an AB2 mono­
mer [11,12]. In this work, we present some results obta­
ined by using an alternative Monte Carlo model of the 
same type of polymerization as well as the principles of 
the model itself.

THE MODEL

We consider a pseudoclassical model of hyperbran­
ched polymerization involving an AB2 monomer. The 
reacting system is a graph-like one with no volume *)
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ascribed to the units. The units have no definite position 
in space and any pair of functional groups is as likely to 
be selected to react as any other. Hence, no physical 
effects influencing the reactions are taken into account 
such as temperature or rate constant variations, restric­
tions to diffusion of species, etc. The cycle closing reac­
tions occur at random and the extent of cyclization in 
the typical systems consisting of 106 units is negligibly 
small, but not eliminated from the present model.

Three states of a unit with unreacted A group can be 
distinguished. For unreacted В groups, the number of 
unit reaction states is four. The states are presented 
schematically in Table 1. Each reaction state has its own 
elementary rate constant. Tire actual rate constant of a 
reaction is a product of the appropriate elementary con­
stants multiplied by the symmetry factor. The rate con­
stants for all twelve possible growth reactions are listed

T a b l e  1. The types of units bearing reactive groups A and В 
(small zigzags denote the remaining fragment of the molecule to 
which the unit is attached)
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in Table 2. The product form of the rate constants is equi­
valent to the assumption that the contributions from 
both reacting units to the activation energy are additive. 
The approach makes it possible to model the so-called 
first shell substitution effect at which the units react [9].

T a b l e  2. The rate constants in the elementary growth reactions 
taking place in hyperbranched polymerization involving an AB2 
monomer reacting with the first shell substitution effect.
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The algorithm on which calculations were based con­
sisted of the following steps:

— Initialization of the system. For the number of 
units introduced by the operator (typically 106) a table is 
generated in computer memory that contains informa­
tion on the state of every unit. All parameters and va­
riables are set to their initial values.

— Choice of units to react. A pair of units to react is 
selected (random number generator points at the posi­
tions of units in the unit table). First a unit with unreac­
ted A group is selected and then follows a unit with a 
free В group. Hence, the choice of a unit is at the same 
time the choice of functional groups to react.

— Determination of rate constants. By using the data 
on the unit states, the rate constant is ascribed to the 
event as shown in Table 2. The ratio of the resulting va­
lue to the rate constant of the fastest reaction in the sys­
tem determines the 'probability' of whether or not the se­
lected emits actually react. The 'probabilities' add up 
each time a given type of pair happened to be selected. 
As the sum for a pair exceeds unity, the reaction is allo­
wed to proceed. Otherwise, a new pair of units is selec­
ted without introducing any changes into the system.

— Modification of system parameters. The reaction 
that takes place between units is equivalent to introdu­
cing appropriate modifications of the states of units in 
the table and to altering global parameters of the sys­
tem, such as conversion degree.

— Results. At certain values of conversion degree, 
the reacting system is analyzed. The molecules of diffe­
rent polymerization degrees are identified and the ave­
rage polymerization degrees calculated. The parameters 
are written to disk.

— End of simulation. The simulation ends when the 
conversion degree reaches a predetermined value. For

practical purposes, the end value is usually set to be sli­
ghtly smaller than 1, typically 0.995.

The results obtained by the Monte Carlo simulations 
were confronted with the molecular parameters evalu­
ated by using the newly developed kinetic model of the 
same hyperbranched polymerization [12]. The kinetic 
model has a form of a single compact Smoluchow- 
ski-like rate equation. In its present form, the rate equa­
tion also tackles the systems reacting with the first shell 
substitution effect, but to a limited extend as compared 
to the Monte Carlo model. Namely, only two different 
rate constants are distinguished: K, = kAk]B = kAk2B and 
K 2 =  к Ак зв =  k Ak 4B with k A =  К  A =  k 2A =  k3A. In other 
words, in units with two unreacted В groups, the latter 
react with the rate constant Ku whereas in the units 
with just one В group unreacted, the rate constant of its 
reaction with any A group is K2.

The Smoluchowski-like rate equation is
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( 1 )
for the counting function

i j (2)

which is a polynomial representation of the entire size 
distribution in polymerization system. The coefficients: 
[;i, j]y at the dummy variables x and у are the concentra­
tions of molecules composed of i units with two 
unreacted В groups (terminal units) and j  units with one 
unreacted В group (linear units). The functions Hb Hx, 
and Hy are functions of time, t, also derived from H, thus:

t f j  = # ( t, 1,1/a) (3)
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The rate constants are present in the rate equation in 
the form of a ratio

and the time units are rescaled relative to the real time t 
according to

x = 2 K\t (6)

Details of derivation of the rate equation (1) as well as 
the methods of extracting molecular parameters of poly­
merizing systems out of it can be found elsewhere [11].

RESULTS AND DISCUSSION

In order to compare the results of calculations obtain­
ed by the two methods, i.e., the results of Monte Carlo 
simulations with those of kinetic calculations, we have 
limited ourselves to the sets of rate constants that can be 
set the same in both methods. In the Monte Carlo calcu­
lations we have set
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k\A =  k 2 А =  к ЪА =1

k \B = k 2B =i \̂ (7)
k 3B =  k 4B  =  ^ 2

The relative rate constant of the kinetic model, a, was 
calculated as in eqn. (5).

For the typical size of reacting system consisting of 106 
monomer units, the time needed for a single simulation on 
a PC equipped with an 800 MHz processor ranged from 
half an hour (for random system, K: = K2-  1) to several ho­
urs. Simulations were repeated for a given set of input pa­
rameters to smooth out the results. The results presented 
below are averages from at least five simulations.

The number- and weight-average polymerization de­
grees in the system, P„ and P.,„ respectively, as well as 
polydispersity indices Pw/P„, were essentially identical 
in both methods. The lines on the plots obtained by the 
two methods were indistinguishable. Since in the Monte 
Carlo simulations cycle formation was allowed to pro­
ceed at random (i.e., whenever the functional groups se­
lected to react happened to belong to the same unit, the 
reaction was allowed to proceed at the same rate as in 
the case of reaction between same groups on different 
units), the identical values of the averages suggest that 
the extent of cyclization in all systems was very small. 
Indeed, only the presence of a few cyclic molecules was 
recorded in the simulation outputs.

As found also earlier [11,12], in all cases, the average 
degrees of polymerization grew quite rapidly as the 
conversion approached unity. For a large rate constant 
ratio a, the average polymerization degrees grew faster 
with conversion than they did at small a. This was the 
result of the increased rate of formation of branched 
molecules in the system. The reactions between large 
molecules were faster than those involving monomer. 
This can be observed in Fig. 1, where the fraction of mo­
nomer units is plotted against conversion of groups A. 
At any conversion p, the monomer fraction n,/N is the

Fig. 1. The change o f monomer concentration in homopoly­
merization o f an AB2 monomer; the concentration is expres­
sed as the ratio o f monomer, nv to the total o f all units in 
the system, N: constant ratio a : + — 0.05, о — 0.5, □  — 5

larger, the larger is a. Note that, for the random reaction 
(all rate constants are the same), a= 0.5.

It is also interesting to observe the changes in the en­
tire size distribution of polymer species calculated at 
different conversions p at various rate constant ratios 
(Fig. 2). To calculate the entire distribution from the ki-

Fig. 2. The number distribution of polymer species in homo­
polymerization o f an AB2 monomer in relation to conver­
sion, p, at various rate constant ratio a; conversion p: a — 
0.5, b — 0.75, c — 0.9; constant ratio a: + — 0.05, о  — 
0.5, □  — 5
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netic model (eqn.l) one has to derive and solve roughly 
twice as many differential equation as there are polymer 
sizes taken into account. In this respect, the advantage 
of the Monte Carlo model is unquestionable. From the 
plots one can see that the concentrations of small mole­
cules of odd polymerization degree is at large a  somew­
hat smaller than concentrations of the neighboring even 
counterparts. This is explained by the fact that the even 
molecules have more units in linear fragments that tend 
to react rapidly to form branches.

ACKNOWLEDGMENTS
Financial support o f this work by the Polish Committee of 

Scientific Research (KBN), Grant No. 3T09A 069 19, is 
gratefully acknowledged.

REFERENCES

1. Hult A., Johansson M., Malmstrom E.: Adv. Polym.
Sci. 1999,143,1.

2. Sunder A., Heinemann J., Frey FI.: Chem. Eur. }.
2000, 6, 2499.

3. Galina H., Groszek G.: Polimery 1995, 40,16.
4. Flory P. J.: Chapt. 9: [in:] "Principles of polymer 

chemistry" , Molecular weight distribution in 
non-linear polymers and the theory of gelation, 
Cornell Univ. Press, Ithaca 1953, 348.

5. Dusek K., Somvarsky J., Smrckova M., Simonsick 
W. J., Wilczek L.: Polym. Bull. 1999, 42, 489.

6. Yan D., Zhou Z.: Macromolecules 1999, 32, 819.
7. Radke W., Litvinenko G., Muller A. H. E.: Macro­

molecules 1998, 31, 239.
8. Yan D., Zhou Z.: Macromolecules 1999, 32, 245.
9. Gordon M., Scantlebury G. R.: Trans. Faraday Soc. 

1964, 60, 604;
10. Gordon M., Scantlebury G. R.: Proc. Roy. Soc. 1966, 

A292, 380.
11. Galina H., Lechowicz J. B., Kaczmarski К.: Macro-

mol. Theory Simul. 2001,10,174.
12. Galina H., Lechowicz J. B., Walczak M.: Macromo­

lecules, submitted for publication.

Received 29 IX 2001.


