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Abstract: The analysis of wide angle X-ray diffraction (WAXD) curves of semicrystalline polymers is 
connected with their decomposition into crystalline peaks and amorphous components. To this aim a 
theoretical curve is constructed which is a best fitted, mathematical model of the experimental one. All 
parameters of the theoretical curve are found using an optimization procedure. As it has been already 
proved, a reliable decomposition can be performed only by means of a procedure which effectively 
performs a multicriterial optimization. It consists in minimization of the sum of squared deviations 
between the theoretical and experimental curves and simultaneous maximization of the area of the 
amorphous component. So, the objective function in the optimization procedure is constructed of two 
criterial functions which represent the two requirements. The proportions between the criterial func-
tions and their significance at different stages of the procedure must be determined by suitable weights. 
A proper choice of the weights is an important part of the procedure. In this paper a new solution of 
this problem is presented: the weights are changed dynamically in subsequent steps of the optimiza-
tion procedure. A few different algorithms of the weights determination are presented and evaluated 
by means of several statistical method. The optimization procedures equipped with these algorithms 
are tested using WAXD patterns of popular polymers: Cellulose I, Cellulose II and PET. It is shown that 
the optimization procedures equipped with the dynamic algorithms of weights determination are much 
more effective than the procedures using some constant, arbitrarily chosen weights.
Keywords: multicriterial optimization, WAXD method, curve fitting, curve decomposition, statistical 
verification, statistical test.

Zastosowanie optymalizacji wielokryterialnej do rozkładu rentgenowskich 
krzywych dyfrakcyjnych polimerów semikrystalicznych
Streszczenie: Dokonanie analizy krzywych dyfrakcyjnych WAXD polimerów semikrystalicznych, zwią-
zanej z ich dekompozycją na składowe krystaliczne i amorficzne, wymaga zbudowania funkcji stanowią-
cej matematyczny model zarejestrowanej krzywej dyfrakcyjnej. Do wyznaczenia parametrów tej funk-
cji stosuje się nieliniową optymalizację wielokryterialną, polegającą na minimalizacji sumy kwadratów 
odchyleń krzywej teoretycznej od krzywej eksperymentalnej oraz maksymalizacji pola pod składową 
amorficzną. Funkcja celu jest więc skonstruowana z dwóch funkcji kryterialnych, które reprezentują te 
dwa warunki. Proporcje między tymi funkcjami i ich znaczenie na poszczególnych etapach procedury 
optymalizacyjnej muszą być określane przez odpowiednie wagi. Właściwy dobór wag dla funkcji kryte-
rialnych jest jednym z trudniejszych zadań. Zaprezentowano nowe rozwiązanie problemu doboru wag 
dla funkcji kryterialnych: wagi zmieniano dynamicznie w kolejnych krokach procedury. Zaproponowano 
kilka różnych algorytmów wyznaczania wag. Algorytmy porównano i oceniono za pomocą testów sta-
tystycznych. Procedury wyposażone w te algorytmy zastosowano do rozkładu krzywych dyfrakcyjnych 
celulozy I, celulozy II i poliestru. Wykazano, że procedury wyposażone w dynamiczne algorytmy wyzna-
czania wag są znacznie bardziej skuteczne niż procedury wykorzystujące wagi stałe, ustalone arbitralnie.
Słowa kluczowe: optymalizacja wielokryterialna, metoda WAXD, dopasowywanie krzywych, rozkład 
krzywych, weryfikacja statystyczna, test statystyczny.
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The analysis of the WAXD curves of semicrystalline 
polymers makes possible determination of such impor-
tant structural parameters like degree of crystallinity, 
size of crystallites and weight fractions of polymorphic 
phases. Moreover, one can trace changes in the positions 
and shapes of individual crystalline peaks that occur as 
a result of different physical and/or chemical treatment. 
Another interesting subject is the influence of various 
factors on the shape and position of the amorphous halo. 

To perform such calculations and analyses, the in-
tensity contribution diffracted by crystalline regions of 
a polymer has to be isolated in a reliable way from the 
contribution arising from the amorphous regions [1]. In 
other words – the WAXD curve has to be decomposed 
into crystalline peaks and amorphous halo. Most often, 
such a task is performed using a curve fitting method 
[2–10]. In this method, an experimental diffraction curve 
is approximated by a theoretical curve. The last one is de-
scribed by a function which is a sum of component func-
tions related to individual crystalline peaks, amorphous 
halos and a background scattering. This theoretical curve 
is a mathematical model, which should be as close the ex-
perimental curve as possible.

Of course, such a relatively simple decomposition of 
a diffraction curve differs considerably from the well- 
-known Rietveld method [11, 12] as the main aim of the 
latter one is to refine the crystal structure parameters, not 
only the peak‘s profiles. To this aim it uses a feedback be-
tween the refined crystal structure parameters from one 
side and the shapes, positions, and intensities of crystal-
line reflections on the other side. However, in the case of 
semicrystalline polymers, the presence of the amorphous 
phase, as well as very small sizes and considerable distor-
tions of crystallites, cause that in most cases an unambig-
uous refinement of the crystal structure is not possible. 

To construct a mathematical model of an experimental 
curve we have to know the number of crystalline peaks 
and amorphous halos present in the curve, their angular 
positions, heights and widths at half height. These data 
depend on the type of a polymer and its crystalline struc-
ture: crystallographic system and unit cell parameters. 

As it has been already proved [13–16], a reliable and ef-
fective decomposition of a diffraction curve can be per-
formed only by means of an optimization method which 
effectively performs a multicriterial optimization proce-
dure. 

Generally, a multicriterial optimization involves mini-
mizing and/or maximizing several criterial functions 
subjected to a set of constraints. In this particular case, it 
consists in minimization of the sum of squared deviations 
between the theoretical and experimental curves and si-
multaneous maximization of the area of the amorphous 
component in the theoretical curve [16]. So, the objective 
function in the optimization procedure is constructed of 
two criterial functions which represent the two condi-
tions. However, these conditions are not equally signifi-
cant. The first one, i.e., the best fitting of the curves is 

a superior and dominating requirement while the second 
criterion fulfills a steering role and helps the optimiza-
tion procedure to achieve unambiguous solutions. There-
fore, the shares of the two criterial functions in the ob-
jective function must be represented by suitable weights. 
A proper choice of the weights is an important part of 
the procedure. Usually some constant, arbitrarily chosen 
weights, the same in the whole optimization procedure 
have been established [17]. In this paper a new approach 
to this problem is presented: the weights are changed 
dynamically in the subsequent steps of the procedure. 
A few different algorithms of the weights determination 
are described. The effectiveness of the algorithms is com-
pared by means of different statistical methods. The new 
optimization procedure is tested using WAXD patterns 
of popular polymers: Cellulose I, Cellulose II and PET.

CONSTRUCTION OF A MODEL

It has to be emphasized that the experimental curve, the 
model of which is to be constructed must be recorded for 
a perfectly isotropic sample of the investigated polymer. 
Otherwise, the intensities and shapes of crystalline peaks 
may be more or less distorted, depending on the preferred 
orientation. For this reason, oriented samples like fibers or 
foils must be thoroughly fragmented and powdered before 
the measurement. Besides, the curve should be recorded in 
a 2θ angle range which is wide enough to encompass all 
crystalline peaks and amorphous halos produced by the 
sample. It means that in most cases, the curve should be 
recorded from a few 4–5° up to about 60°.

Starting the construction of the mathematical model of 
an experimental curve we have to estimate the angular 
positions of crystalline peaks present in the curve. They 
can be found by means of Bragg law, knowing the crys-
tallographic data related to investigated polymer, i.e., unit 
cell parameters and crystallographic system. These posi-
tions can also been taken from different data bases like 
ICCD PDF-4+ [18] if they are available. It should be em-
phasized that the positions of peaks in the experimental 
curve may slightly differ from those ones obtained from 
such calculations. The differences may result from differ-
ent crystallization conditions, temperature of the poly-
mer sample, etc. The shape of peaks can be approximated 
by various functions: Gauss, Lorentz, Pearson VII, split 
Pearson, Voight, pseudo-Voight, and a linear combina-
tions of Gauss and Lorentz profiles [4–6, 13, 19–21]. Usu-
ally, a diffraction curve contains two broad amorphous 
maxima (halos). The first maximum is related to the av-
erage distance between the polymer chains in the amor-
phous phase while the second one is related to the aver-
age intramolecular C-C distances [6, 13]. They are located 
at about 2θ ≈ 20° and 2θ ≈ 40° respectively. Moreover, the 
model should contain a component representing a back-
ground scattering which is stretched out in the whole 
registration range and generally can be approximated by 
a third order polynomial. 
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Summarizing, the theoretical function Ŷ is given by 
equation:
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where: Qj – a component function (Gauss, Lorentz, 
Pearson VII, or others) which describes a crystalline peak 
or amorphous halo, x – the scattering angle 2θ, N –the 
total number of component functions, B – a third order 
polynomial approximating background, β = (β1,…, βk) – 
the vector of unknown parameters, k – number of pa-
rameters, β ∈ Rk where Rk – a k-dimensional space of so-
lutions.

The experimentally recorded intensity yi at a given 
point xi can be described as:

 yi = F(xi, β1,…, βk) + εi, 1 ≤ i ≤ n (2)

where: n – the number of points in the curve, εi – unob-
served, random errors. 

By means of an optimization procedure, the best 
estimates b = (b1,…, bk) of the unknown parameters 
β = (β1,…, βk) are determined. 

Using these estimates, the theoretical intensities:

	 ŷi = F(xi, b1,…, bk) (3)

and the residuals ei (differences between experimental 
and theoretical intensities) can be calculated:

 ei = yi – ŷi (4)

As it will be shown in the next paragraph, based on the 
statistical analysis of the residuals, one can perform veri-
fication of the model and assess its quality.

MULTICRITERIAL OPTIMIZATION

Most frequently the objective function in a multicrite-
rial optimization procedure is constructed as a weighted 
sum of functions representing individual criteria: 

 f = w1 · f1 + … + wi · fi + … + wn · fn  (5) 

where: fi – a criterial function, wi – its weight, n – the 
total number of criteria.

The objective function used in decomposition of the 
WAXD curves contains two components [16, 17]: 
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where: S – the sum of squared differences between the 
normalized theoretical and experimental intensities (re-
siduals): 
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AAF – amorphous area factor – is the integral inten-
sity (i.e., the total area) of the amorphous component. 
It should be emphasized that before decomposition, the 
experimental curve is normalized. It means that the to-
tal area of the WAXD pattern (integral intensity) is equal 
to 1. 

The optimization procedure consists in minimization 
of the objective function. This aim is achieved in succes-
sive iterations. In each i-th iteration, a set of parameters is 
determined for which the objective function reaches its 
minimal value. Moreover, in each iteration the minimal 
value of f1 function (i.e., the minimal sum of squared re-
siduals min

iS ) and minimal value of f2 function (equivalent 
to the maximum amorphous area factor) are determined.

The roles of the functions f1 and f2 are different and 
their significance changes in the successive stages of 
the procedure. The first criterion, i.e., the best fitting of 
a theoretical curve to the experimental one is the supe-
rior, dominating and final condition. So, it is particularly 
important in the last steps of the procedure. The second 
criterion makes a steering role and gives a direction in 
which the solution space has to be searched. This is why 
it is more important at the beginning stages of calcula-
tions. This means that the weights w1 and w2 of the cri-
terial functions should be changed dynamically during 
the procedure and their values should be interconnected 
with the values of the criterial functions. Taking these re-
quirements into account the following seven algorithms 
with dynamic weights have been proposed. Also an al-
gorithm with fixed weights (algorithm no. 8) has been 
tested for comparison. 

Algorithm 1. Bearing in mind that the total area of the 
amorphous component is lower than 1 (the experimental 
curve is normalized to 1 before decomposition) we as-
sume that the weight of the first function is constant and 
equal to 1 while the weight of the function f2 is equal to 
the current value of function f1 in a given iteration, i.e., to 
Si for the current set of parameters: 
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Algorithm 2. In this algorithm the weight of function 
f2 in a given iteration is determined by the minimal value 
of function f1 in the previous iteration, i.e., min

iS 1− . Typically 
the AAF factor ranges from 0.3 to 0.8. For this reason, to 
make the influence of f1 and f2 comparable, we assume 
that the weight of f2 is equal to ( min

iS 1−  / 2):
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where: min
iS 1−  – the minimal value of S in the previous 

iteration. 
Algorithm 3. In this algorithm we assume that the 

weights w1 and w2 are equal to the minimal values of 
function f2 and f1 in the previous iteration, respectively: 
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where: min
iS 1−  – the minimal value of S in the previous 

iteration, max
iAAF 1−  – the maximal area of the amorphous 

component in the previous iteration.
Algorithm 4. The weight of the first function is equal 

to 1, while the weight of the second function is equal to 
the ratio of the minimal values of the functions f1 and f2 
in the previous iteration: 
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Algorithm 5. Here, the roles of weights w1 and w2 are 
fulfilled by the current values of functions f2 and f1 re-
spectively, calculated for a given set of parameters: 
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Algorithm 6. This algorithm is similar to the algo-
rithm 1 but this time the weight w2 is two times smaller 
than before:
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Algorithm 7. This algorithm is also similar to the al-
gorithm 2 but this time the weight w2 is two times bigger 
than before: 
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Algorithm 8. In this algorithm the weights are fixed 
and they do not change in all iterations. From this point 
of view, it differs considerably from the remaining algo-
rithms. The first weight w1 is equal to 1 and the second 
w2 is equal to the minimal sum of squared residuals cal-
culated in the first iteration: 
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To verify which one of these algorithms is more suit-
able and effective in determination of the most reliable 
models of experimental WAXD curves, the models ob-
tained with different algorithms have to be carefully 
compared and tested. To this aim several statistical mea-
sures and tests can be used. They are described in the 
next paragraph. 

STATISTICAL VERIFICATION OF A MODEL 

In the literature we can found various measures, so- 
-called information criteria, used for the statistical assess-
ment of the quality of models and for their comparison. 
Comparing several models, the information criteria help 
to estimate which one of them is most suitable for a given 
set of experimental data. The best model is the one for 
which the information criteria reach the smallest values. 
Some of these criteria are listed below: 

1. Integral index SS [22]: 
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2. Normalized index SR [22]: 
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3. Standard error of estimation of a model Se [23]: 
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4. Durbin-Watson statistic d [24]:
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5. Sum of squared differences of residuals S [eq. (7)]. 
In the formulas given above yi and ŷi are the experi-

mental and theoretical values respectively, n is the num-
ber of points, k is the number of determined parameters 
and ei are the residuals, i.e., the differences between ex-
perimental and theoretical values: ei = yi – ŷi.

The information criteria: SS, SR, Se and S reach zero 
when theoretical and experimental curves are identical. 
The lower are their values the better quality of fitting.

The Durbin-Watson d statistic is used to detect serial 
correlations of the residuals caused by a wrong fit. When 
the residuals are completely uncorrelated the d statistic 
amounts to 2.00 [24].

To make the comparison of the models obtained with 
different algorithms more comprehensive, two other in-
dices have been constructed in this work: a spread in-
dex SSm and effectivity index E. The spread index SSm is 
calculated based on the results obtained in 10 successive 
runs of an optimization procedure equipped with a given 
algorithm: 
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where: Smi – the sum of squared residuals obtained in 
the i-th run of an optimization procedure equipped with 
the m-th algorithm, Smin – the minimal sum of squared 
residuals obtained for all algorithms.

The effectivity index is calculated as the ratio of the 
sum of squared residuals to the amorphous area factor 
(AAF), i.e., the area of the amorphous component of a the-
oretical curve, calculated in the last iteration: 
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Though the informational criteria are useful in com-
parison and classification of different models they do not 
allow to decide if the best chosen model is completely 
reliable and if it can be accepted for further calculations. 
The only way to estimate credibly the statistical correct-
ness of a model, i.e., the quality of fitting, is to perform 
suitable tests. The tests must verify if the following con-
ditions related to the residuals are fulfilled: 

– residuals are uncorrelated, i.e., there are no hidden 
trends in their distribution: lack of autocorrelation of the 
residuals;

– residuals are random, i.e., the experimental points 
must be randomly dispersed along the theoretical curve;

– residuals are normally distributed;
– residuals are unbiased, i.e., expected value of residu-

als is zero;
– residuals are symmetric, i.e., the numbers of positive 

and negative residuals are the same;
– the variance of the residuals must be constant.

The statistical tests used to assess the quality of 
fitting of theoretical and experimental curves

The statistical tests can help in evaluation of the quality 
of fitting of the theoretical curve to the experimental one 
and should answer whether the discrepancies between 
the curves are significant or not. 

Generally, the tests of significance employed in this 
paper are used to detect if the differences between com-
pared parameters or distribution functions characteriz-
ing investigated populations are significant or not. To 
this aim two types of hypotheses are formulated – a null 
hypothesis, that the differences between compared pa-
rameters or distributions are not significant and the al-
ternative hypothesis which is a contradiction of the null 
hypothesis and which is assumed in case the null hy-
pothesis is rejected. Verifying the hypotheses one can 
make two types of errors: error of the first and of the 
second type. The error of the first type consists in the 
rejection of a true hypothesis. And in advance assumed 
probability of the commission of such an error is referred 
to as a significance level and is denoted as α. The error of 
the second type is the acceptance of a false hypothesis. 
In order to verify the null hypothesis, an appropriate test 
statistic is employed, which is calculated on the basis of 
the differences between the compared parameters or dis-
tributions. If the differences are large (significant), then 
the value of this test statistic will be enclosed in a so- 
-called critical area, which is dependent on the assumed 
significance level. 

The decision on rejection of the null hypothesis is 
made basing upon the result of a comparison between 
the value of the test statistic value and the critical value 
read out from the test statistic distribution table. Instead, 
using a relevant software we can calculate the area be-
low the probability density function in the range from 
the absolute value of the test statistic to +∞. This area is 

referred to as p-value or probability level p. The p-value 
is not dependent on the significance level α and is conve-
nient to interpret. If p > α, then there is no grounds to re-
ject the null hypothesis. If p < α, then null hypothesis is to 
be rejected in favor of the alternative hypothesis, which 
means that the difference between the parameters or the 
distributions is significant. Usually, the significance level 
α is equal to 0.05.

In this paper the statistical tests are used to investigate 
if the population of residuals fulfill the conditions listed 
above. From among many statistical tests such have been 
chosen which can detect the discrepancies between theo-
retical and experimental curves related to those condi-
tions and can assess whether they are significant or not. 
So, the following tests were used: 

1. Test of the autocorrelation of residuals. 
2. Tests of the randomness of residuals:
– Wald-Wolfowitz series test [23, 25],
– Wilcoxon matched pairs signed-ranks test [23, 25],
– Test of series length [23, 25].
3. Tests of the normality of the residuals’ distribution:
– Chi-squared test [25, 26],
– Jarque-Bera (JB) test [25, 27],
– Kolmogorov-Smirnov (KS) test [25].
4. Test of the unbiasedness of residuals [25].
5. Test of the symmetry of residuals [23, 25].
A detailed description of all these tests is presented in 

the Appendix. 
The sixth condition that the residuals should fulfill, i.e., 

a constant variance of residuals or in other words their 
homoscedascity means that the residuals should have the 
same scatter in a whole angular range for which the ex-
perimental curve is recorded. In this paper the homosce-
dascity is checked visually by means of a differential plot 
representing the residuals value as a function of 2θ angle.

EXPERIMENTAL PART

The optimization procedures with objective functions 
constructed according to the algorithms described in the 
paragraph “Multicriterial optimization” were tested us-
ing the WAXD curves of isotropic samples of popular 
polymers: Cellulose I, Cellulose II and poly(ethylene tere-
phthalate) (PET). The curves were recorded in the 2θ range 
5–60° with the step size of 0.1° by means of URD-6 Seifert 
diffractometer using a symmetrical reflection mode and 
a copper target X-ray tube (λ = 1.54 Å) operated at 40 kV 
and 30 mA. The CuKα radiation was monochromized 
with a graphite monochromizer. Before the calculations 
a linear background was subtracted from each curve and 
the curves were normalized in such a way that the total 
area (integral intensity) under each curve was equal to 
unity [13]. Decomposition of the WAXD curves was per-
formed by means of a new version of the computer pro-
gram WAXSFIT, employing the PSO (particle swarm op-
timization) procedure [16] into which the algorithms 1–8 
described earlier are implemented. Starting values for the 
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angular positions of crystalline peaks used in the opti-
mization procedure were determined based on the unit 
cell parameters of investigated polymers. All crystalline 
peaks and amorphous maxima were approximated by a 
linear combination of Gauss and Cauchy functions.

It should be emphasized that for a given WAXD curve, 
the optimization procedure equipped with a given algo-
rithm has been run for 10 times. So, for each algorithm 
10 results of decomposition, i.e., 10 models were obtained. 
The final values of parameters (i.e., information criteria) 
and tests characterizing the algorithm were calculated by 
averaging the results obtained in those 10 runs.

The models obtained using different algorithms were 
compared and evaluated by means of various statistical 
measures, tests and plots. The plots were prepared by 
means of the program WAXSFIT [13] and Statistica [28, 29].

RESULTS AND DISCUSSION

To compare the algorithms, three aspects were taken 
into account:

(1) Checking if the conditions that the residuals have to 
fulfill are met (see paragraph “Statistical verification of a 
model”). To this aim the statistical tests described in that 
paragraph were used. The hypotheses were verified with 
the significance level equal to 0.05. If the result of a given test 
was positive for a model obtained with a given algorithm, a 
mark 1 was assigned to this algorithm. If the result was neg-
ative, the assigned mark was 0. The final result of this test 
was obtained as an average of marks obtained in 10 runs. 

(2) Evaluation of the quality of fitting of a theoretical 
model to the experimental curve based on the informa-
tional criteria described in earlier paragraph. 

(3) Evaluation of the unambiguity and effectivity of the 
algorithms based on the indices SSm, E, and on the degree 
of crystallinity. 

Cellulose I

The WAXD curve of Cellulose I and the best fitted the-
oretical curve are shown in Fig. 1. 

The theoretical curve contains nine crystalline peaks and 
two amorphous maxima. For each component 4 parameters 
were determined, therefore the total number of optimized 
parameters was 44. The positions of crystalline peaks deter-
mined by the optimization procedure are given in Table 1.

Graphical presentations of the results obtained for the 
WAXD curve of Cellulose I are given in Figs. 2 and 3. The 
values of information criteria: SS, SR, Se differ considerably 
from one another. For this reason they have been stan-
dardized before presentation in one plot. To this aim a 
mean x is subtracted from each value of a given variable 
xi and obtained result is divided by the standard devia-
tion of this variable:
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Fig. 1. WAXD curve of Cellulose I: experimental curve – points, 
the best fitted theoretical curve and its all elements (9 crystalline 
peaks and 2 amorphous halos) – solid line
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Fig. 3. The results of statistical test for the WAXD curve of Cel-
lulose I

Fig. 2. A comparison of the information criteria obtained for the 
analyzed algorithms in the case of WAXD curve of Cellulose I; 
to present them in one plot the criteria were pre-standardized


