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are not met for these curves. Figure 15 shows the spread 
index SSm calculated according to the formula (20). As 
we can see, also this parameter reaches the biggest, i.e., 
the worst, values for the algorithm 7 and 8. Performed 
analysis confirms once again that the algorithms 7 and 8 
should not be employed in the optimization procedures. 

The effectivity of the remaining six algorithms is com-
pared based on two parameters: first is the effectivity index 
E [formula (21)] and second is the degree of crystallinity ob-
tained with a given algorithm. As it has been explained in 
introduction, our aim is to construct such an optimization 
procedure which leads to a model with the smallest sum 
of squared residuals and simultaneously maximal area of 
the amorphous component. This is why the algorithm for 
which E reaches the lowest value is the best one. Of course 
the degree of crystallinity and its standard deviation given 
by such an algorithm should also be the lowest. Figure 16 
shows the standardized values of the effectivity index E 
calculated for the six tested algorithms. In Fig. 17 we can 
compare the degree of crystallinity obtained for investi-
gated polymers with these algorithms. The degree of crys-
tallinity is averaged over ten runs of an optimization pro-
cedure. Standard deviation is also given. We see that for 
Cellulose I and Cellulose II the index E reaches the highest 
(i.e., the worst) values for the algorithm number 6. Also the 
degree of crystallinity obtained with this algorithm reach-
es the highest values for all investigated polymers. Looking 
at the formula (13) which defines this algorithm, one can 
suppose that such results are caused by a too small weight 
w2 of the second criterial function f2. 

CONCLUSIONS 

The calculations performed in this work show that em-
ploying the algorithms from 1 to 6 in the optimization pro-
cedures we obtain theoretical curves (models) well fitted 
to the experimental ones and the requirements related to 
the residuals, i.e., randomness, normality, symmetry, un-
biasedness, and lack of correlation, are fulfilled for these 
curves. However taking into account the effectivity index 
E we must state that the algorithm 6 is worse than the re-
maining ones. Though it provides the quality of fitting 
(sum of squared residuals in Fig. 12) as good as the first five 
algorithms, the amorphous area factor is in its case much 
lower. This means that the weight w2 of the second crite-
rial function is too low in it. As a result the second require-
ment of the optimization procedure, i.e., maximization of 
the area of the amorphous component is not well accom-
plished. Consequently the degree of crystallinity given 
by this algorithm is clearly inflated (Fig. 17). On the other 
hand in the case of the algorithm 7, the weight w2 is too 
high and w1 too low. As a result, the quality of fitting given 
by this algorithm is noticeably lower (Figs. 2, 6 and 9). So, 
the algorithms 6 and 7 should be rejected.

However, the worst results are obtained with the algo-
rithm 8 in which the weights w1 and w2 are fixed. Their 
values are chosen in this way that in the first steps of the 

1
2
3
4
5
6
7
8

0.36

0.12
0.16
0.20
0.24
0.28
0.32

PET Ce II Ce I

0.08
0.04

SSm

1

2

3

4

5

6

2.0

-0.5

0.0

0.5

1.0

1.5

PET

Ce II
Ce I

-1.0

-1.5

E

C
r
y

s
ta

ll
in

it
y

0.52

0.50

0.46

0.44

0.40

0.36

0.34

0.32

1 2 3 4 5 6

Ce I

1 2 3 4 5 6

Ce II

1 2 3 4 5 6

PET

0.48

0.42

0.38

0.30

0.28

Fig. 15. The spread index SSm calculated for the tested algorithms 
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optimization procedure, both criterial functions, i.e., the 
sum of squared residuals f1 and the inverse of amorphous 
area factor f2 have a comparable significance. Neverthe-
less, after a few dozens of iterations, when the first cri-
terial function f1 decreases, its meaning becomes lower 
and lower in comparison with f2. This is why the qual-
ity of fitting obtained with the algorithm 8 is consider-
ably worse as compared with the results provided with 
the algorithms 1–5 in which the weights are dynamical-
ly changed. Thanks to the variability of the weights, the 
roles of criterial functions f1 and f2 in this algorithms can 
be effectively controlled in the successive stages of the 
procedure. A detailed comparison and evaluation have 
shown that the dynamic algorithms 1–5 are equally use-
ful in determination of a credible theoretical model of an 
experimental curve. The differences between the degree 
of crystallinity values obtained with these algorithms are 
very small and do not exceed ± 1.5 %.

The results of this work clearly prove that the optimi-
zation procedures equipped with dynamic algorithms of 
weights determination are very effective tools for a reli-
able decomposition of the WAXD curves of polymers. 

APPENDIX

Description of the statistical tests used to assess the 
quality of fitting of theoretical and experimental curves:

Testing of the autocorrelation of residuals – Durbin- 
-Watson test

Verification of the hypothesis about the lack of auto-
correlation of the residuals involves calculation of the 
Durbin-Watson statistic [23, 24] given by the formula:
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where: ei – the residuals: ei = yi – ŷi, n – the number of 
points.

For high n values (n > 60), the Durbin-Watson statistic 
has an asymptotic normal distribution:

 







−−

−
mnmn

nN 4,)1(2  (24)

where: m – the number of optimized parameters of the 
investigated model.

Using the value of the test statistic d and the probabil-
ity density function of the above normal distribution one 
can calculate the probability level p. Comparing the value 
of p with the assumed significance level α one can accept 
or reject the hypothesis about the lack of autocorrelation 
of the residuals. 

The Durbin-Watson statistic has been strongly recom-
mended as providing a quantitative measure of the serial 
correlations between adjacent points in a diffraction curve.

Testing of the randomness of residuals

The randomness of residuals is the fundamental assump-
tion of the least squares method. Residuals should be al-
ternately positive and negative, i.e., the experimental points 
should be randomly distributed above and below the theo-
retical curve. If not, it means that some trends or tenden-
cies in the experimental points layout must occur, which 
implies that the optimization should be repeated or, that 
the assumed model should be modified. The randomness 
of residuals is tested using the series tests and sign tests.

Wald-Wolfowitz series test

In this test [25] to verify the hypothesis about the ran-
domness of residuals, the total number k of series formed 
of the residuals of the same sign is determined. The high-
er the number of such series and the shorter they are, the 
better the fitting of the curves is. If the number of series is 
low, then long series formed of the residuals of the same 
sign may occur. It means in turn that at some ranges the 
curves are not well fitted. For a high number of points, 
the total number k of series formed of the residuals of the 
same sign has an asymptotic normal distribution:
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where: n1, n2 – the numbers of positive and negative re-
siduals respectively.

On the basis of the determined numbers n1, n2, k and 
the probability density function of the above normal dis-
tribution, the probability level p is calculated. If p > α, 
then one can assume, that the residuals have a random 
nature.

Wilcoxon matched pairs signed-ranks test

The difference between the Wilcoxon test [25] and the 
previous one is, that it additionally takes into account the 
values of examined residuals. In the first stage, the resid-
uals are ranked, which means that subsequent numbers 
are assigned to the absolute values of residuals. In the 
next step, the established ranks are divided into 2 groups. 
First group contains the ranks for positive residuals, sec-
ond group – the ranks for negative residuals. Summation 
of the ranks within these two groups gives a sum T+ for 
positive differences and a sum T- for negative differences. 

Afterwards, the lower of these sums is selected 
T = min{T+, T-}. For high n, the T statistic has an asymptot-
ic distribution which is convergent to normal distribution: 

 







+

24
1),1(

4
1 n(n + 1)(2n + 1)nnN  (26)

Using the value of T and the probability density func-
tion of the above normal distribution, the probability lev-
el p can be calculated. If p > α, then it is assumed, that 
residuals are random.
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Test of series length

In this test, the length r of the longest series is deter-
mined. For a high number of points n (n→∞), the statistic 
u has a standard normal distribution N(0,1) [23, 25]:
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On the basis of the value of u and the probability den-
sity function of the above standard normal distribution, 
the probability level p is calculated. If p > α, then one can 
assume, that the residuals have a random nature.

Testing of the normality of the residuals distribution

If a theoretical curve is a good approximation of an ex-
perimental curve, then the residuals should be normally 
distributed with the mean equal to zero. A visual way of 
checking the normality of the residuals distribution is the 
normal probability plot. 

Besides, several tests can be used to examine the nor-
mality: chi-squared test for normality and Jarque-Bera 
[27] test. In most cases, the results of all these tests are 
in accordance with one another, but even if at least one 
test confirms that the residuals are normally distributed 
then the assumption of normality can be considered as 
met.

Chi-squared test

The chi-squared test [25, 26] requires to group the re-
siduals and divides them into r non-overlapping inter-
vals. The test consists in a comparison of a real number 
of residuals that fall into each of the intervals with an 
expected number that results from the assumed normal 
distribution. To assess the goodness of fit of the experi-
mental distribution of residuals and theoretical normal 
distributions, a chi-squared statistic is used:
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If the null hypothesis is true, this statistic follows an 
asymptotic distribution χ2 with (r-k-1) degrees of freedom, 
where r is the number of intervals and k is the number 
of distribution parameters, which have been determined 
on the basis of the experimental distribution of residuals 
using the highest credibility method. 

There are two such parameters: mean and standard de-
viation which mean that k = 2.

On the basis of the value of the χ2 statistic and the proba-
bility density function of the above asymptotic χ2 distribu-
tion, the probability level p is calculated. If p > α, then one 
can assume, that the residuals are normally distributed.

The Jarque-Bera (JB) test

The skewness coefficient is a measure of the degree 
of asymmetry of a distribution. It is defined as the third 
standardized moment of the distribution:

 A = M3 / S3 (29)

where: M3 – the third moment about the mean μ, and 
S is the standard deviation.

 ∑
=−

=
n

i
ien

M
1

3
3 1

1  (30)

 ∑
=−

=
n

i
ien

S
1

2

1
1  (31)

Normal distribution is a perfect symmetric distri-
bution. The skewness coefficient for such distribution 
equals 0. A negative value of the skewness coefficient in-
dicates a negative asymmetry while a positive value of 
this parameter indicates a positive asymmetry.

Kurtosis is a parameter used to test the slenderness of a 
distribution. Its value for normal distribution equals 3. The 
kurtosis of an experimental distribution is determined 
from the fourth central moment and standard deviation:

 K = M4 / S4 (32)
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The JB test [27] is a goodness-of-fit test checking wheth-
er the experimental data have the skewness and kurtosis 
matching these ones of a normal distribution. To verify 
the hypothesis, a JB statistic is built:
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where: A – skewness coefficient, K – kurtosis, n – num-
ber of data, k – number of parameters.

The JB statistic has a chi-squared distribution with 2 de-
grees of freedom. For the significance level α = 0.05, the 
critical value of JB equals 5.991, which means, that if the JB 
statistic value is lower than 5.991, then there is no grounds 
to reject the hypothesis, that this distribution is not normal.

Kolmogorov-Smirnov (KS) test

In the KS test, the quality of fitting of the experimen-
tal distribution of residuals and the theoretical normal 
distributions is measured by means of a statistic, which 
determines the maximum distance between the experi-
mental cumulative probability function Femp(xi) and the 
theoretical cumulative probability function F(xi) for the 
normal distribution:
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This statistic follows the Kolmogorov-Smirnov distri-
bution. For the significance level α = 0.05, the critical val-
ue of the Dn statistic (i.e., the value for which the probabil-
ity level p is equal to 0.05) amounts to 1.358. If Dn > 1.358, 
then the hypothesis about the distribution normality 
should be rejected.

Testing of the unbiasedness of residuals

To test the if the residuals are unbiased, a hypothesis, 
that the residuals expected value of the residuals is equal 
to zero, is verified. To verify this hypothesis, the follow-
ing statistic is used [25]:
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where: e– the arithmetic mean of residuals, S – stan-
dard deviation of residuals [eq. (18)].

For n > 30, the I statistic is convergent to normal distri-
bution. Using the value of I and the probability density 
function of that normal distribution, the probability level 
p can be calculated. If p > α, then there is no grounds to 
reject the hypothesis that the residuals are unbiased.

Testing of the symmetry of residuals

The symmetry of residuals means, that the numbers of neg-
ative and positive residuals should be the same. The test con-
sists in verifying the hypothesis, that the ratio of the number 
of positive residuals to the total number of all of them is equal 
to ½. To verify this hypothesis, a temp statistic is used [23, 25]:
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where: m – the number of positive residuals, n – the 
total number of data. For n > 30, this statistic has a nor-
mal distribution with the expected value equal to zero. 
On the basis of the value of the temp statistic and the prob-
ability density function of that normal distribution, the 
probability level p is calculated. If p > α one can assume 
that the residuals are symmetric. 
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