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Condensation polymerization of AB2 monomers – modeling 
and validation of model of polyreaction performed at the 
room temperature 
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Abstract: Statistical and kinetic methods to model step polymerization of AB2 type of monomers (A and B 
stand for functional groups) are briefly reviewed and the relationships linking conversion or reaction time 
with averages of polymerization degree are derived for systems fulfilling the Flory-Stockmayer assumptions, 
i.e., for those with no reactivity changes of functional groups and absence of intramolecular linking. Results 
of kinetic studies are also presented for polymerization of 3,5-diaminobenzoic acid, aided with N,N’-diisopro-
pylcarbodiimide, carried out at room temperature in NMR test tubes. For reaction carried out in dimethylsul-
phoxide, the relationship between conversion and time is well described by the simplest kinetic model. It was 
stated that in the case of reaction carried out in dimethylformamide the reactivity of the second amino group 
in the monomeric units seems to be ten times lower than that of the first one. 

Keywords: hyperbranched polymer, statistical model, kinetic model, carbodiimide, apparent rate constant. 

Polimeryzacja kondensacyjna monomerów AB2 – modelowanie i weryfikacja 
modeli polireakcji prowadzonej w temperaturze pokojowej 

Streszczenie: Przedstawiono krótki przegląd statystycznych i kinetycznych metod modelowania stopniowej 
polimeryzacji monomerów typu AB2 (A i B reprezentują grupy funkcyjne). Wyprowadzono relacje łączące 
stopień przereagowania ze średnimi stopniami polimeryzacji dla układów reagujących zgodnie z założeniami 
Flory’ego i Stockmayera, tj. bez zmian w reaktywnościach grup funkcyjnych oraz nieobecności wiązań we-
wnątrzcząsteczkowych. Przedstawiono wyniki badań kinetycznych przebiegu polimeryzacji kwasu 3,5-dia-
minobenzoesowego wspomaganej N,N’-diizopropylokarbodiimidem, którą prowadzono w temperaturze po-
kojowej w probówkach NMR. Kinetykę badanej reakcji, prowadzonej w dimetylosulfotlenku, dobrze opisuje 
najprostszy model kinetyczny polikondensacji. Stwierdzono, że w przypadku reakcji prowadzonej w dimety-
loformamidzie, reaktywność drugiej grupy aminowej w jednostkach monomerycznych jest dziesięciokrotnie 
mniejsza, niż reaktywność pierwszej z tych grup. 

Słowa kluczowe: polimer hiperrozgałęziony, model statystyczny, model kinetyczny, karbodiimid, pozorna 
stała szybkości.

Highly branched macromolecules have recently become 
important components of advanced materials. An inter-
est in their synthesis and applications stems from various 
fields of modern technology. Two groups of these products 
were widely studied for the last two and a half decades. 
These were dendrimers and hyperbranched polymers. 
Dendrimers are prepared in rather tedious many-staged 
organic synthesis, whereas hyperbranched polymers can 
be prepared in a one pot synthesis. Hence, the dendrimers 

consisting of macromolecules of rather regular and uni-
form structure are generally much more expensive than 
the hyperbranched polymers. The latter, on the other 
hand, consist of macromolecules of highly diversified both 
size and molecular structure. Despite of this disadvantage, 
Yates and Hayes [1] named at least 12 different applications 
of hyperbranched polymers in modern technology. 

Although the pioneering theoretical works on hyper-
branched polymers date back to Flory’s fundamental 
paper [2, 3] published in 1952, the actual term of hyper-
branched polymers was coined by Kim and Webster [4] 
nearly forty years later. Since then there was a multitude 
of publications on both dendrimers and hyperbranched 
polymers. A review by Brigitte Voit based on 15 years 
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of research on hyperbranched polymers quotes over 
250 publications [5]. 

In this paper we intend to review methods of modeling 
of formation of hyperbranched polymer limited to those 
prepared by polycondensation of ABf-1 (or ARBf-1 [2, 3]) type 
monomers where A and B stand for functional groups. 

Flory [2, 3] derived the following expression for the 
number fraction of molecules of polymerization degree 
x as a function of conversion α of groups B in a mono-
mer ABf-1:

 
(fx – 2x + 1)! x!

(fx – x)!
= αx – 1 (1 – α) fx – 2x + 1nx  (1)

The size distribution of molecules represented by this 
equation is very broad, in fact practically diverging as 
the conversion of B groups, approaches its highest attain-
able value of 1/(f - 1). 

Since the year ca. 2000, there appeared a number of 
papers devoted to finding a quantitative relationship 
between the molecular weight of hyperbranched poly-
mers prepared by various techniques and conversion of 
monomers or their functional groups. Different meth-
ods of modeling were used, usually adopted or devised 
to be consistent with the mechanism of polymer forma-
tion. 

Here, we will concentrate on models of hyperbranched 
polymerization that proceed according to the classical 
self-polycondensation of an AB2 monomer. To our knowl-

edge, one of the statistical models presented here, the one 
based on the cascade theory, has not been used for that 
purpose, before. Burchard [6] used the cascade theory 
to analyze polymers derived from similar monomers of 
ABB’ type, but his aim was to study scattering behavior 
of branched natural polysaccharides. 

In the second part of this report, we intend to show that 
the simple models of hyperbranched polycondensation 
are often sufficiently accurate to describe growth of poly-
mer molecules, even in processes where links between 
units are formed in chemically complex reactions. To do 
this, we will present some results of kinetic studies on 
polymerization of 3,5-diaminobenzoic acid carried out at 
room temperature with N,N’-diisopropylcarbodiimide as 
a carboxyl group activator. 

SIMPLE CLASSICAL MODELS OF 
HYPERBRANCHED POLYCONDENSATION 

We will consider a polymerization of an AB2 monomer, 
such as the process shown in Scheme A. 

Two statistical models of the hyperbranched polym-
erization like that shown in Scheme A are to be present-
ed. In statistical models, it is the conversion of functional 
groups which is the key independent parameter. By as-
suming certain probability distribution of finding a func-
tional group to be reacted, the statistical models build up 
the entire molecular size distribution in the reacting sys-
tem. In particular, moments of this distribution can quite 
easily be extracted. 
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In the simplest case one has to assume that the polym-
erization proceeds according to the Flory-Stockmayer [7] 
rules:

– all functional groups of the same kind have equal 
reactivity, independently of the size of macromolecule 
which they are attached to; 

– only intermolecular links can be formed, i.e., only 
acyclic macromolecules are formed. 

In real polycondensation systems, especially in the 
processes involving monomers of functionality higher 
than two, the second assumptions cannot be fulfilled, 
but usually the extent of cyclization in polycondensation 
becomes significant at conversions close to the gel point 
or, in the case of aromatic AB2 monomers, at the conver-
sion exceeding ca. 90 % [8]. 

A model based on the cascade theory makes use of the 
formalism introduced to polymer science by Gordon [9], 
back in 1962. In the theory applied to polycondensation 
of an AB2 monomer let us consider an equilibrium sys-
tem at the conversion of A groups equal to pA. Clearly, the 
conversion of B groups is pB = pA/2 for stoichiometry rea-
sons. In the theory, one selects at random one unit from 
the entire system and places it in the zeroth generation 
of the molecular family tree. Suppose the unit selected 
belongs to a pentamer as shown in Fig. 1. The unit in 
zeroth generation (the root or ancestor) is distinguished 
from the two types of units (offsprings) in the first and 
higher generations. The offsprings of type α have one 
of its reacted B functional groups (thin line) directed to-
wards the preceding generation. The offsprings of type 
β are linked to preceding generation through its reacted 
A group (thick line). The yet unreacted functional groups 
bear letters A or B.

With the assumption described above, one can write 
down the probability generating functions (PGF) for the 

number of offsprings for each type of unit. Thus, for the 
root one can define PGF in the form: 

 F0(s) = (1 - pA + pAsα)(1 - pB + pBsβ)2 (2)

where: sα, sβ – dummy variables of no physical mean-
ing. 

Parameters sα and sβ are conveniently considered as 
the algebraic vector s = (sα, sβ)T. Note that F0 is simply the 
product of PGF’s for the functional groups (for example, 
the probability of finding group B reacted is pB and the 
resulting link leads to a unit of type β in the next genera-
tion, hence pB is multiplied by sβ; the probability of find-
ing the group unreacted is 1 - pB with 0

βs = 1 for no link 
obviously omitted). 

As can be seen by inspection, for the units in genera-
tion 1 and higher one has: 

 F1α(s) = (1 - pA + pAsα)(1 - pB + pBsβ) (3)

for a unit of type α, since it may have both types of 
offsprings, and:

 F1β(s) = (1 - pB + pBsβ)2 (4)

for units of type β, which are parents of only β type of 
offsprings. It is convenient to use the vector form of PGF 
for the first and higher generations:

 







F1(s) =

F1α(s)

F1β(s)
 (5)

Now, in the standard manner [7, 9], one can calculate 
the number and weight average polymerization degrees 
using the following formulas. The number average po-
lymerization degree, Pn is: 

 
1

Pn = 1 – jTF0'/2
 (6)

 
1
1




s =










F0' =

∂F0/∂sα

∂F0/∂sβ

 (7)

where: jT = (1 1).

Thus, since 









F0' =

pA

2pB

, by substituting p ≡ pA = 2pB, we 
obtain

 
1 – p

1
Pn =  (8)

The weight average polymerization degree is again 
calculated in the cascade theory in the standard manner 
from the equation which for AB2 monomer has the form: 

 PW = 1 + (F0')T[I – F1']-1j (9)

where: I – a unit matrix 
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Fig. 1. A pentamer obtained in polycondensation of an AB2 mo-
nomer (top) where the unit labeled 0 happened to be selected as 
the root of molecular family tree (bottom)
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Standard calculations yield: 

 
2pB

pBpA

0 







F1' =  (10)

 
1 – 2pB0

1 – pA =






 –pB

pB

−1

01 – 2pB

1 – 2pA

1








=

[I – F]-1 =

(1 – pA)(1 – 2pB)

 (11)

hence: 

 
(1 – p)2

1 – p2/2
Pw =  (12)

An alternative statistical approach provides the recur-
sive method based on the elementary probability law and 
formalism developed by Macosko and Miller [10, 11]. This 
approach was used by Fredet and Tessier [10] to model, 
among other systems, also homopolymerization of an 
ABf monomer. In this approach, the fundamental rela-
tion concerning the total probability is used: 

 E(Y) = E(Y|A)pA + E(Y|Ā)pĀ� (13)

where: E(Y) – the expected (average) value of random 
variable Y, Y|A – the conditional probability of occurring 
Y provided that A occurs with probability pA, Ā – the 
event complementary to A, occurring with probability 
pĀ, usually equal to 1 - pA. 

Calculation of the averages of polymerization degrees 
for polymerization of AB2 monomer is particularly easy. 
Without going into details, one may show that the weight 
average polymerization degree at certain conversion of 
groups A is [12]: 

 PW = 1 + E(NA
out) + 2E(NB

out) (14)

where: E(NA
out), E(NB

out) – the expected numbers of units 
linked to a randomly selected unit from the entire sys-
tem, looking out from the unit through reacted function-
al group A and B, respectively. 

Help in evaluating these numbers can serve Fig. 2. The 
randomly selected units are labeled with numbers and 
directions ‘in’ and ‘out’ for the units through B group 
(unit 1) or through A group (unit 2).

The following procedure of evaluating E(NA
out) and 

E(NB
out) is used [10]. NA

out equals to NB
in, if A group reacted 

(with probability pA), or is 0, if the group remained unre-
acted (probability 1 - pA). On the other hand, NB

out equals 
to NA

in, if group B reacted with A (probability pB) or equals 
to 0, if B were not reacted (probability 1 - pB). Looking at 
Fig. 2 one can see that, considering unit 1 through its re-
acted B group (thin line) one can write: 

 NB
in = 1 + NB

out + NA
out (15)

while for unit 2 through reacted A group (thick line): 

 NA
in = 1 + 2NB

out (16)

Now, the expressions describing the total probability 
yield the following set of equations: 

 E(NA
out) = pAE(NB

in) + 0(1 – pA) = pAE(NB
in) (17)

 E(NB
in) = 1 + E(NB

out) + E(NA
out) (18)

 E(NB
out) = pBE(NA

in) (19)

 E(NA
in) = 1 + 2E(NB

out) (20)

Solution of the set yields:

 
1 – 2pB

E(NB
out) = 

pB  (21)

 
(1 – pA)(1 – 2pB)

E(NA
out) = 

pA(1 – pB)
 (22)

The last two equations and substitution p = pA = 2pB fi-
nally give:

 
(1 – p)2

1 – p2/2
PW=  (23)

It is also not difficult to show that: 

 
1 – pA

1
Pn =

1 – pB

1
=

1 – p

1
=  (24)

Thus, for the simplest case, both statistical methods 
give identical expressions linking conversion of function-
al groups with averages of molecular size distribution in 
polycondensation of an AB2 monomer. 

KINETIC MODELS 

In the kinetic models the independent variable is time, 
not conversion, like in the statistical ones. The simplest 
kinetic models, i.e., the models with similar simplifying 
assumptions as those applied in the statistical analyses 
were presented in several versions [13–15]. They were ap-
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Fig. 2. Illustration of the recursive method of evaluating the ave-
rages of polymerization degrees in polycondensation of an AB2 
monomer
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plied to systems with the so called core monomer, usually 
of Bg type (g = 1, 2, …) added to ABf monomer in order to 
reduce dispersity of the polymer product [15–17]. Kinetic 
models were also studied in computer simulations [8, 18, 
19] usually in attempts to interpret experimental data. 
The computer simulations allowed for relaxing the classi-
cal assumptions, including formation of cyclic structures, 
changes in reactivity of functional groups or even steric 
hindrances. A disadvantage of these approaches is that 
they either cannot be generalized [18] or applied to a par-
ticular system [19]. 

Our attempt to implement cyclization in the kinet-
ic analysis [14] was rightly criticized as unphysical [20]. 
In fact, in all theoretical approaches beside the comput-
er simulations, Flory’s confession [2, 3]: “Intramolecular 
condensations are neglected out of despair at the diffi-
culty of treating the problem otherwise” seems still valid. 

While describing a kinetic model basing on the same 
classical assumptions as adopted in statistical approach-
es, we intend to demonstrate the equivalence of the two 
alternative methods of modeling of hyperbranched poly-
condensation. 

Consider a polymerization system involving an AB2 
monomer at time t. Let the concentration of an i-mer at 
this time be [i], conveniently expressed as the number of 
molecules of this size, independently of their structure, 
divided by the total number of monomeric units in the 
system. Note that this definition of the distribution of 
molecular sizes of species implies that the first moment 
of the distribution is necessarily equal to 1:

 i[i] = 1
i = 1
∑

∞

 (25)

Zeroth moment is the reciprocal of the number average 
polymerization degree: 

 [i] 
i = 1
∑

∞ 1
=

Pn

 (26)

Each acyclic hyperbranched macromolecule of size i 
has exactly one unreacted A group and i + 1 unreacted B 
groups. Hence the reaction between i-mer and j-mer can 
be written as:

  →ABi+1 + ABj+1 ABi+j+1 
(i + j + 2)k  (27)

where: k – the rate constant of reaction between func-
tional groups. 

The rate at which an i-mer appears in and vanishes 
from the system is described by the Smoluchowski co-
agulation equation [21], which can be converted [13] into 
the partial (master) differential equation: 

 )()(
τ

+−−






 +
∂x
∂G

=
∂
∂G

G G G0 G0 GGx  (28)

This equation describes the time dependence of the 
entire size distribution in the polymerizing system ex-
pressed by the function: 

 [i]eix∑
∞

i=1
G(τ,x) =  (29)

The time units have been scaled to τ = kt and the other 
symbols stand for the zeroth and first moments of distri-
bution, respectively. 

 [i]∑
∞

i=1
G0 = G0(τ,0) =  (30)

 i[i]∑
∞

i=1
Gx = Gx(τ) = =

x=0∂x
∂G

 (31)

Parameter x is here a dummy variable of no physical 
meaning, while i, the polymerization degree, should not 
be confused with imaginary unit. 

Solutions of differential equations extracted from the 
master equation by its successive differentiation with re-
spect to x, followed by putting x = 0 yield the following 
results [13]:
 Pn = 2eτ – 1 (32)

 PW = 2e2τ – 1 (33)

 pA ≡ p = 2
eτ – 1

2eτ – 1
 (34)

A reader may wish to verify that the relationships be-
tween the averages of polymerization degrees and con-
version p are identical as those obtained using the statis-
tical approaches. 

Advantages of the kinetic approach over the statisti-
cal ones are the following. Calculations for systems with 
differences in reactivity of individual groups including 
the substitution effect [15, 17], are relatively simple and, 
more importantly, one may take into account variations 
in the composition of the reacting system. Such variations 
aim at reducing dispersity of the resulting condensation 
product and may involve carrying out the reaction start-
ing with a core monomer, e.g., B2 monomer, and adding 
the AB2 monomer in portions [22, 23] or continuously in-
troducing it at different rates [24]. 

One version of kinetic models developed by us [14] 
takes into account the substitution effect for B groups, 
i.e., it considers a system where both B groups in a unit 
are equally reactive, but with the reactivity of the second 
group changing after the first one has reacted. The model 
produces a simple set of ordinary differential equations 
for partial moments of size distribution expressed this 
time by the function: 

 [i,j]xi(αy)j

i=1 j=0
∑∑
∞ ∞

H(τ,x,y) =  (35)

where: [i, j] – the concentration of molecules sharing i 
units with both B groups unreacted, and j units with one 
B group reacted, again expressed as the number of these 
molecules divided by the total of all units in the system, 
x, y – dummy variables, α = k’/2k – the ratio of rate con-
stants for reaction of the first B group (k) and the second 
one (k’). 
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Fig. 3. Enlarged fragments of 1H NMR spectra of room temperature polycondensation reaction mixtures in (the peaks are ascribed 
to resonance signals from protons in position 2,6 in 3,5-diaminobenzoic acid units): a) DMF, b) DMSO

a) b)

With no substitution effect, α = 1/2. 
The set of ordinary differential equations with respect 

to time, sufficient to follow the conversion of A groups 
has the form [14]: 

 







H1= –H1(H1 + Hx)

Hx= –H1Hx
Hy= αH1(Hx + Hy)

 (36)

where:
 H1(τ) = H(τ, 1,1/α) (37)

 
∂x
∂H

Hx(τ) =
x=1, y=1/α

 (38)

 
∂y
∂H

Hy(τ) =
x=1, y=1/α

 (39)

EXPERIMENTAL KINETIC ANALYSIS 

For a polycondensation carried out at room temper-
ature, the kinetics is particularly easy to follow using 
NMR spectroscopy. Kinetic analyses of this kind were 
published for many systems, both for aliphatic [25–27] or 
aromatic [28] monomers. 

We have made several kinetic experiments involving 
4-bis(4-hydroxyphenyl)pentanoic acid and 3,5-diamino-
benzoic acid. Furthermore, the systems with core mono-
mers and gradual introduction of AB2 monomers to the 
NMR tube where a core monomer had been already pres-
ent were also studied. Details of the last experiments 
will be presented in a subsequent paper. Here, we re-
port on the kinetic analysis of 3,5-diaminobenzoic acid 
homopoly condensation in different solvents. In the ex-
periments, all carried out at 25 °C, calculated amounts of 
solvent (d6-DMSO, d7-DMF, 0.75 cm3), N,N-dimethylami-
nopyridinium 4-toluene sulfonate catalyst (7.5 mg), and 

the monomer (48 mg) were placed in an NMR tube to re-
cord the first spectrum. Then, N,N’-diisopropylcarbodi-
imide (57 mg) was added using a microsyringe and spec-
tra were recorded at predetermined time intervals. The 
whole experiment took ca. 6 h. The signals from protons 
2,6 in the aromatic ring of monomer units were used as 
diagnostic ones [29]. In DMF, it was a doublet at 6.66 ppm 
(at 6.43 ppm in DMSO) which broadened as the reaction 
proceeded. The actual conversion was calculated from 
reduction of signal intensity from diagnostic protons in 
unreacted monomer. It was calculated after deconvolut-
ing the broadened signals. The doublets recorded in DMF 
and DMSO are shown in Fig. 3. 

The rate curve recorded in DMSO was sufficiently well 
described by eq. (36) derived from the simplest kinetic 
model [13] with τ substituted back by kt, where t was 
the real time of reaction. The result is shown in Fig. 4. 
For monomer concentration of 0.416 mol/dm3 the appar-
ent rate constant calculated directly using eq. (36) was 
k = (4.30 ± 0.07) · 10–3 1/min.

In DMF, however, similar experiment revealed a con-
siderable substitution effect exerted by the reacted ami-
no group. For a very similar monomer concentration of 
0.428 mol/dm3, the apparent rate constant calculated di-
rectly using eq. (36) was k = (9.7 ± 0.33) · 10-3 1/min. The 
best rate curve, however, calculated for different α values 
from the set of differential equations (36) was that for 
k = (1.06 ± 0.03) · 10-2 1/min with α = 0.05. The last value 
suggests that the second amino group reacts with car-
boxyl group at the rate ten times lower than the first one. 
Certainly, one has to bear in mind the approximations 
involved in this kinetic analysis. Only the effect of sub-
stitution of amino groups is taken into account, but not 
that of carboxyl groups. Furthermore, possible cycliza-
tion and other side reactions are disregarded. We believe, 
though, that the cyclization has a minor effect on the re-
action and, as shown by recent Monte-Carlo studies [8], 
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the cyclization reaction in homopolycondensation of the 
all aromatic monomer becomes appreciable at the conver-
sion well above 90 %. The consistence of the models with 
the experiment for the reaction in DMF is well illustrated 
in Fig. 5, where the best lines calculated disregarding the 
substitution effect and that corresponding to α = 0.05 are 
plotted along with experimental results. 

As one can see in Fig. 6, the rate of condensation re-
action or, strictly speaking, the apparent rate constant 
is linearly dependent on the concentration of monomer 
and starts very close to origin. This means that the room 
temperature polycondensation is here the first order re-
action with respect to monomer concentration. On the 
other hand, despite of rather complex mechanism of poly-
condensation carried out in the presence of carbodiimide 
[30–32], from the point of view of connectivity process, 
the formation of polymer well conforms to very much 
straightforward second order reaction between function-
al groups. 

It is interesting that, unlike in DMF, no substitution 
effect was observed for the system in DMSO, although 
the proximity of amino groups in the monomer might 
suggest such an effect to be inevitable. The reason might 
be either some superposition of side effects or different 
solvating power of the two solvents. The latter manifests 
itself by different splitting of 1H NMR signals from pro-
tons 2,6 of monomeric units in different solvents (Fig. 3). 
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