Published : 2022-09-01

Changes in structure of dibutyrylchitin fibres in the process of chitin regeneration


Dibutyrylchitin (DBCH) fibres were formed from the solution of the polymer in and anhydrous ethyl alcohol. The fibres obtained were then treated with a 5 % aq. potassium hydroxide solution at temperatures ranging from 20 oC to 90 oC. The process of chitin regeneration was carried out gradually and its rate depended on the temperature. High temperature alkaline treatment causes that the transformation of DBCH fibres into fibres of regenerated chitin becomes more effective. Molecular and supermolecular structural changes of fibres were examined by wide angle X-ray diffraction (WAXS), FT-IR spectroscopy and Raman spectroscopy. The obtained diffractograms were analyzed using Hindeleh and Johnson method and the computer programme "Optifit" in which Rosenbrock method was applied. The analysis of WAXS diffraction patterns showed that the curve obtained for regenerated chitin is similar to the curve obtained for the native krill chitin. The analysis of FT-IR spectra proved that as a result of hydrolysis of DBCH fibres the transformation of DBCH into chitin took place and chemical structure of the obtained chitin was almost the same as the structure of the initial native chitin.





Download files


Biniaś, D., Włochowicz, A., Boryniec, S., & Biniaś, W. (2022). Changes in structure of dibutyrylchitin fibres in the process of chitin regeneration. Polimery, 50(10), 742-747. Retrieved from