Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. Water Res., 2016, 91, 156. https://doi.org/10.1016/j.watres.2016.01.008.
Google Scholar
Fosso-Kankeu, E.; Webster, A.; Ntwampe, I. O.; Waanders, F. B. Arab. J. Sci. Eng., 2017, 42, 1389. https://doi.org/10.1007/s13369-016-2244-x.
Google Scholar
Zhu, B.; Chen, Y.; Wei, N. Trends Biotechnol., 2019, 37, 661. https://doi.org/10.1016/j.tibtech.2018.11.005.
Google Scholar
Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. J. Environ. Manage., 2018, 227, 395. https://doi.org/10.1016/j.jenvman.2018.08.069.
Google Scholar
Song, K.; Qian, X.; Li, X.; Zhao, Y.; Yu, Z. Carbohydr. Polym., 2019, 222, 115016. https://doi.org/10.1016/j.carbpol.2019.115016.
Google Scholar
Qin, L.; Feng, L.; Li, C.; Fan, Z.; Zhang, G.; Shen, C.; Meng, Q. J. Clean. Prod., 2019, 228, 112–123. https://doi.org/10.1016/j.jclepro.2019.04.249.
Google Scholar
Wojnárovits, L.; Földváry, C. M.; Takács, E. Radiat. Phys. Chem., 2010, 79, 848. https://doi.org/10.1016/j.radphyschem.2010.02.006.
Google Scholar
Barsbay, M.; Güven, O. Radiat. Phys. Chem., 2019, 160, 1. https://doi.org/10.1016/j.radphyschem.2019.03.002.
Google Scholar
Ziaei-Azad, H.; Semagina, N. Appl. Catal. A Gen., 2014, 482, 327. https://doi.org/10.1016/j.apcata.2014.06.016.
Google Scholar
Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Dalt. Trans., 2015, 44, 17883. https://doi.org/10.1039/c5dt02964c.
Google Scholar
Graf, C.; Dembski, S.; Hofmann, A.; Rühl, E. Langmuir, 2006, 22, 5604. https://doi.org/10.1021/la060136w.
Google Scholar
Si, R.; Zhang, Y. W.; You, L. P.; Yan, C. H. J. Phys. Chem. B, 2006, 110, 5994. https://doi.org/10.1021/jp057501x.
Google Scholar
Khalil, A. M.; Hassan, M. L.; Ward, A. A. Carbohydr. Polym., 2017, 157, 503. https://doi.org/10.1016/j.carbpol.2016.10.008.
Google Scholar
Hatch, K. M.; Hlavatá, J.; Paulett, K.; Liavitskaya, T.; Vyazovkin, S.; Stanishevsky, A. V. Int. J. Polym. Sci., 2019. https://doi.org/10.1155/2019/7103936.
Google Scholar
Voronova, M.; Rubleva, N.; Kochkina, N.; Afineevskii, A.; Zakharov, A.; Surov, O. Nanomaterials, 2018, 8, 1011. https://doi.org/10.3390/nano8121011.
Google Scholar
Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K. Russ. J. Phys. Chem. A, 2012, 86, 1836. https://doi.org/10.1134/S0036024412120199.
Google Scholar
Voronova, M. I.; Surov, O. V.; Rubleva, N. V.; Kochkina, N. E.; Afineevskii, A. V.; Zakharov, A. G. Compos. Commun., 2019, 15, 108. https://doi.org/10.1016/j.coco.2019.07.006.
Google Scholar
Nikiforova, T. E.; Kozlov, V. A.; Odintsova, O. I.; Krotova, M. N.; Gagina, A. N. Russ. J. Appl. Chem., 2010, 83, 1170. https://doi.org/10.1134/S1070427210070025.
Google Scholar
Yu, D. G.; Wang, X.; Li, X. Y.; Chian, W.; Li, Y.; Liao, Y. Z. Acta Biomater., 2013, 9, 5665. https://doi.org/10.1016/j.actbio.2012.10.021.
Google Scholar
Nikiforova, T. E.; Kozlov, V. A.; Odintsova, O. I. Russ. J. Gen. Chem., 2017, 87, 2204. https://doi.org/10.1134/S107036321709047X.
Google Scholar
Takács, E.; Mirzadeh, H.; Wojnárovits, L.; Borsa, J.; Mirzataheri, M.; Benke, N. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2007, 265, 217. https://doi.org/10.1016/j.nimb.2007.08.098.
Google Scholar
Aly, A. S.; Sokker, H. H.; Hashem, A.; Hebeish, A. Am. J. Appl. Sci., 2005, 2, 508. https://doi.org/10.3844/ajassp.2005.508.513.
Google Scholar
Zahra, R.N Suhartini, M Prayitno, S Melawati, J. J. Ilm. Apl. Isot. dan Radiasi, 2020, 16, 7. https://doi.org/http://dx.doi.org/10.17146/jair.2020.16.1.5652.
Google Scholar
Suhartini, M.; Ginting, J.; Sudirman; Putri, A. D.; Mubarak, Z. R. Atom Indones., 2018, 44, 145. https://doi.org/10.17146/aij.2018.920.
Google Scholar
Molaei, M. A.; Osouli-Bostanabad, K.; Adibkia, K.; Shokri, J.; Asnaashari, S.; Javadzadeh, Y. Acta Pharm., 2018, 68, 325. https://doi.org/10.2478/acph-2018-0025.
Google Scholar