[1] European Tyre and Rubber Manufacturers' Association: New End-of-Life Tyres statistics for 2020 and 2021 (published 13 March 2024). https://www.etrma.org/news/new-end-of-life-tyre-statistics-2020-2021/ (available online 25 September 2024)
Google Scholar
[2] Przydatek G., Budzik G., Janik M.: Effectiveness of selected issues related to used tyre management in Poland. Environmental Science and Pollution Research 2022, 29, 31467. https://doi.org/10.1007/s11356-022-18494-7
DOI: https://doi.org/10.1007/s11356-022-18494-7
Google Scholar
[3] Formela K.: Sustainable development of waste tires recycling technologies – recent advances, challenges and future trends. Advanced Industrial and Engineering Polymer Research 2021, 4, 209. https://doi.org/10.1016/j.aiepr.2021.06.004
DOI: https://doi.org/10.1016/j.aiepr.2021.06.004
Google Scholar
[4] Battista M., Gobetti A., Agnelli S., Ramorino G.: Post-consumer tires as a valuable resource: review of different types of material recovery. Environmental Technology Reviews 2021, 10, 1. https://doi.org/10.1080/21622515.2020.1861109
DOI: https://doi.org/10.1080/21622515.2020.1861109
Google Scholar
[5] Campuzano F., Martínez J.D., Santamaría A.F.A., et al.: Pursuing the end-of-life tire circularity: An outlook toward the production of secondary raw materials from tire pyrolysis oil. Energy & Fuels 2023, 37, 8836. https://doi.org/10.1021/acs.energyfuels.3c00847
DOI: https://doi.org/10.1021/acs.energyfuels.3c00847
Google Scholar
[6] Formela K.: Waste tire rubber-based materials: Processing, performance properties and development strategies. Advanced Industrial and Engineering Polymer Research 2022, 5, 234. https://doi.org/10.1016/j.aiepr.2022.06.003
DOI: https://doi.org/10.1016/j.aiepr.2022.06.003
Google Scholar
[7] Karger-Kocsis J., Mészáros L., Bárány T.: Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Materials Science 2013, 48, 1. https://doi.org/10.1007/s10853-012-6564-2
DOI: https://doi.org/10.1007/s10853-012-6564-2
Google Scholar
[8] Phiri M.M., Phiri M.J., Formela K., et al.: Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development – a review. Composites Part B: Engineering 2021, 204, 108429. https://doi.org/10.1016/j.compositesb.2020.108429
DOI: https://doi.org/10.1016/j.compositesb.2020.108429
Google Scholar
[9] Assaggaf R.A., Ali M.R., Al-Dulaijan S.U., et al.: Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology 2021, 11, 1753. https://doi.org/10.1016/j.jmrt.2021.02.019
DOI: https://doi.org/10.1016/j.jmrt.2021.02.019
Google Scholar
[10] Mei J., Xu G., Ahmad W., et al.: Promoting sustainable materials using recycled rubber in concrete: A review. Journal of Cleaner Production 2022, 373, 133927. https://doi.org/10.1016/j.jclepro.2022.133927
DOI: https://doi.org/10.1016/j.jclepro.2022.133927
Google Scholar
[11] Picado-Santos L.G., Capitão S.D., Neves J.M.C.: Crumb rubber asphalt mixtures: A literature review. Construction and Building Materials 2020, 247, 118577. https://doi.org/10.1016/j.conbuildmat.2020.118577
DOI: https://doi.org/10.1016/j.conbuildmat.2020.118577
Google Scholar
[12] Zhang L., Zhang C., Zhang Z., et al.: Characterization, properties and mixing mechanism of rubber asphalt colloid for sustainable infrastructure. Polymers 2022, 14, 4429. https://doi.org/10.3390/polym14204429
DOI: https://doi.org/10.3390/polym14204429
Google Scholar
[13] Klajn K. Gozdek T., Bieliński D.M., et al.: SBR vulcanizates filled with modified ground tire rubber. Materials 2021, 14, 3991. https://doi.org/10.3390/ma14143991
DOI: https://doi.org/10.3390/ma14143991
Google Scholar
[14] Formela K.: Strategies for compatibilization of polymer/waste tire rubber systems prepared via melt-blending. Advanced Industrial and Engineering Polymer Research 2024, 7, 466. https://doi.org/10.1016/j.aiepr.2023.08.001
DOI: https://doi.org/10.1016/j.aiepr.2023.08.001
Google Scholar
[15] Kiss L., Berényi A.E., Németh M., et al.: Enhanced surface activation of ground tire rubber via the radiolysis of water for effective rubber recycling. Heliyon 2024, 10, e37454. https://doi.org/10.1016/j.heliyon.2024.e37454
DOI: https://doi.org/10.1016/j.heliyon.2024.e37454
Google Scholar
[16] Li Y., Shen A., Lyu Z., et al.: Ground tire rubber thermo-mechanically devulcanized in the presence of waste engine oil as asphalt modifier. Construction and Building Materials 2019, 222, 588. https://doi.org/10.1016/j.conbuildmat.2019.06.162
DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.162
Google Scholar
[17] Simon D.Á., Bárány T.: Effective thermomechanical devulcanization of ground tire rubber with a co-rotating twin-screw extruder. Polymer Degradation and Stability 2021, 190, 109626. https://doi.org/10.1016/j.polymdegradstab.2021.109626
DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109626
Google Scholar
[18] Phiri M.M., Phiri M.J., Formela K., et al.: Grafting and reactive extrusion technologies for compatibilization of ground tyre rubber composites: Compounding, properties, and applications. Journal of Cleaner Production 2022, 369, 133084. https://doi.org/10.1016/j.jclepro.2022.133084
DOI: https://doi.org/10.1016/j.jclepro.2022.133084
Google Scholar
[19] Liu Q., Liu J., Yu B., et al.: Preparation and investigation on terminal blend asphalt binders with high content of activated crumb rubber. International Journal of Pavement Engineering 2023, 24, 2020271. https://doi.org/10.1080/10298436.2021.2020271
DOI: https://doi.org/10.1080/10298436.2021.2020271
Google Scholar
[20] Zhao Z., Wu S., Xie J., et al.: Utilization of high contents desulfurized crumb rubber in developing an asphalt rubber pellets modified asphalt. Construction and Building Materials 2023, 402, 133043. https://doi.org/10.1016/j.conbuildmat.2023.133043
DOI: https://doi.org/10.1016/j.conbuildmat.2023.133043
Google Scholar
[21] Wang S., Wang H., Yao H., et al.: Self-healing behavior of rubberized asphalt modulated by the degradation of crumb tire rubber. Construction and Building Materials 2024, 440, 137403. https://doi.org/10.1016/j.conbuildmat.2024.137403
DOI: https://doi.org/10.1016/j.conbuildmat.2024.137403
Google Scholar
[22] Gong F., Cheng X., Chen Y., et al.: 3D printed rubber modified asphalt as sustainable material in pavement maintenance. Construction and Building Materials 2022, 354, 129160. https://doi.org/10.1016/j.conbuildmat.2022.129160
DOI: https://doi.org/10.1016/j.conbuildmat.2022.129160
Google Scholar
[23] Gong F., Cheng X., Zhang X., et al.: Equipment design and parameters recommendation of rubber modified 3D printed asphalt in pavement maintenance. Construction and Building Materials 2024, 431, 136523. https://doi.org/10.1016/j.conbuildmat.2024.136523
DOI: https://doi.org/10.1016/j.conbuildmat.2024.136523
Google Scholar
[24] Lu, N., Shen, M., Liu, J., et al.: Effects of posttreatments on the storage stability of reclaimed rubber. Advances in Polymer Technology 2021, 2021, 6617666. https://doi.org/10.1155/2021/6617666
DOI: https://doi.org/10.1155/2021/6617666
Google Scholar
[25] Marć M., Tsakovski S., Tobiszewski M.: Emissions and toxic units of solvent, monomer and additive residues released to gaseous phase from latex balloons. Environmental Research 2021, 195, 110700. https://doi.org/10.1016/j.envres.2020.110700
DOI: https://doi.org/10.1016/j.envres.2020.110700
Google Scholar
[26] Śmiełowska M., Marć M., Zabiegała B.: Small polymeric toys placed in child-dedicated chocolate food products - Do they contain harmful chemicals? Examination of quality by example of selected VOCs and SVOCs. Exposure and Health 2022, 14, 203–216. https://doi.org/10.1007/s12403-021-00428-2
DOI: https://doi.org/10.1007/s12403-021-00428-2
Google Scholar
[27] Zhu Y., Xu G., Ma T., et al.: Performances of rubber asphalt with middle/high content of waste tire crumb rubber. Construction and Building Materials 2022, 335, 127488. https://doi.org/10.1016/j.conbuildmat.2022.127488
DOI: https://doi.org/10.1016/j.conbuildmat.2022.127488
Google Scholar
[28] Jamal M., Martinez-Arguelles G., Giustozzi F.: Effect of waste tyre rubber size on physical, rheological and UV resistance of high-content rubber-modified bitumen. Construction and Building Materials 2021, 304, 124638. https://doi.org/10.1016/j.conbuildmat.2021.124638
DOI: https://doi.org/10.1016/j.conbuildmat.2021.124638
Google Scholar
[29] Wang, G., Wang, X., Lv, S., et al.: Laboratory investigation of rubberized asphalt using high-content rubber powder. Materials 2020, 13, 4437. https://doi.org/10.3390/ma13194437
DOI: https://doi.org/10.3390/ma13194437
Google Scholar
[30] Xu G., Yao Y., Ma T., et al.: Experimental study and molecular simulation on regeneration feasibility of high-content waste tire crumb rubber modified asphalt. Construction and Building Materials 2023, 369, 130570. https://doi.org/10.1016/j.conbuildmat.2023.130570
DOI: https://doi.org/10.1016/j.conbuildmat.2023.130570
Google Scholar
[31] Yu X., Yang W., Zhang L., et al.: Impact and stretching standardized tests as useful tools for assessment of viscoelastic behavior for highly rubberized asphalt binder. Construction and Building Materials 2022, 348, 128650. https://doi.org/10.1016/j.conbuildmat.2022.128650
DOI: https://doi.org/10.1016/j.conbuildmat.2022.128650
Google Scholar
[32] Liu S., Cao W., Fang J., et al.: Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt. Construction and Building Materials 2009, 23, 2701. https://doi.org/10.1016/j.conbuildmat.2008.12.009
DOI: https://doi.org/10.1016/j.conbuildmat.2008.12.009
Google Scholar
[33] Bonemazzi F., Giavarini C., Shifting the bitumen structure from sol to gel. Journal of Petroleum Science and Engineering 1999, 22, 17. https://doi.org/10.1016/S0920-4105(98)00052-7
DOI: https://doi.org/10.1016/S0920-4105(98)00052-7
Google Scholar
[34] Nivitha M.R., Prasad E., Krishnan J.M.: Transitions in unmodified and modified bitumen using FTIR spectroscopy. Materials and Structures 2019, 52, 7. https://doi.org/10.1617/s11527-018-1308-7
DOI: https://doi.org/10.1617/s11527-018-1308-7
Google Scholar
[35] Ren S., Liu X., Lin P., et al.: Influence of swelling-degradation degree on rheological properties, thermal pyrolysis kinetics, and emission components of waste crumb rubber modified bitumen. Construction and Building Materials 2022, 337, 127555.
Google Scholar
https://doi.org/10.1016/j.conbuildmat.2022.127555
DOI: https://doi.org/10.1016/j.conbuildmat.2022.127555
Google Scholar
[36] Borinelli J.B., Portillo-Estrada M., Costa J.O., et al. Emission reduction agents: A solution to inhibit the emission of harmful volatile organic compounds from crumb rubber modified bitumen. Construction and Building Materials 2024, 411, 134455. https://doi.org/10.1016/j.conbuildmat.2023.134455
DOI: https://doi.org/10.1016/j.conbuildmat.2023.134455
Google Scholar
[37] Tang N., Zhang Z., Dong R., et al. Emission behavior of crumb rubber modified asphalt in the production process. Journal of Cleaner Production 2022, 340, 130850. https://doi.org/10.1016/j.jclepro.2022.130850
DOI: https://doi.org/10.1016/j.jclepro.2022.130850
Google Scholar
[38] Liu G., Fang S., Wang Y., et al.: Emission of volatile organic compounds in crumb rubber modified bitumen and its inhibition by using montmorillonite nanoclay. Polymers 2023, 15, 1513. https://doi.org/10.3390/polym15061513
DOI: https://doi.org/10.3390/polym15061513
Google Scholar