[1] Castro‑Casado D.: “Chemical treatments to enhance surface quality of FFF manufactured parts: a systematic review”, Progress in Additive Manufacturing, 6, 2021, p. 307–319, https://doi.org/10.1007/s40964-020-00163-1.
Google Scholar
[2] Chohan J.S., Singh R., Boparai K.S.: “Vapor smoothing process for surface finishing of FDM replicas”, Materials Today: Proceedings, 26(2), 2020, p. 173-179, https://doi.org/10.1016/j.matpr.2019.09.013.
Google Scholar
[3] Chohan J.S., Singh R.: “Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications”, Rapid Prototyping J., 23(3), 2017, p. 495–513, https://doi.org/10.1108/RPJ-05-2015-0059.
Google Scholar
[4] Dizon J.R.C., Gache C.C.L., Cascolan H.M.S., Cancino L.T., Advincula, R.C.: “Post-Processing of 3D-Printed Polymers”. Technologies 2021, 9, p. 61. https://doi.org/10.3390/technologies9030061.
Google Scholar
[5] Galantucci L.M., Lavecchia F., Percoco G.: “Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modelling”, CIRP Annals, Volume 59, Issue 1, 2010, p. 247-250, https://doi.org/10.1016/j.cirp.2010.03.074.
Google Scholar
[6] Gao H., Kaweesa D. V., Moore J., Meisel N. A.: “Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts”, The Journal of The Minerals, Metals & Materials Society (TMS), 69, 2017, p. 580–585 , https://doi.org/10.1007/s11837-016-2214-5.
Google Scholar
[7] Garg, A., Bhattacharya, A., Batish, A.: “Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength”, Int. J. Adv. Manuf. Technol., 89, 2017, p. 2175- 2191, https://doi.org/10.1007/s00170-016-9257-1.
Google Scholar
[8] Hart K. R., Dunn R. M., Sietins J. M., Hofmeister Mock C. M., Mackay M. E., Wetzel E. D.: “Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing”, Polymer, Volume 144, 2018, p. 192-204, https://doi.org/10.1016/j.polymer.2018.04.024.
Google Scholar
[9] Hart K. R., Wetzel E. D.: “Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials”, Engineering Fracture Mechanics, Volume 177, 2017, p. 1-13, https://doi.org/10.1016/j.engfracmech.2017.03.028.
Google Scholar
[10] Kalyan K., Singh J., Phull G.S., Soni S., Harpinder S., Gurpreet K.: “Integration of FDM and vapor smoothing process: Analyzing properties of fabricated ABS replicas”, Materials Today: Proceedings, 5, 2018, p. 27902–27911, https://doi.org/10.1016/j.matpr.2018.10.029.
Google Scholar
[11] Kevin R. Hart, Ryan M. Dunn, Jennifer M. Sietins, Clara M. Hofmeister Mock, Michael E. Mackay, Eric D. Wetzel: “Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing”, Polymer, Volume 144, 2018, p. 192-204, ISSN 0032-3861, https://doi.org/10.1016/j.polymer.2018.04.024.
Google Scholar
[12] Khan M.S., Mishra S.B.: “Minimizing surface roughness of ABS-FDM build parts: An experimental approach”, Materials Today: Proceedings, 26(2), 2020, p. 1557-1566, https://doi.org/10.1016/j.matpr.2020.02.320.
Google Scholar
[13] Mali, H.S., Prajwal, B., Gupta, D., Kishan, J.: “Abrasive flow finishing of FDM printed parts using a sustainable media”, Rapid Prototyp. J., 24, 2018, p. 593–606, https://doi.org/10.1108/RPJ-10-2017-0199.
Google Scholar
[14] Mulan M., Chun-Yen O., Wang J., Liu Y.: “Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing”, Additive Manufacturing, 31, 2020, p. 5176, https://doi.org/10.1016/j.addma.2019.100972.
Google Scholar
[15] Sawant D.A., Shinde B.M., Raykar S.J.: “Post processing techniques used to improve the quality of 3D printed parts using FDM: State of art review and experimental work”, Materials Today: Proceedings, 2023, https://doi.org/10.1016/j.matpr.2023.09.202.
Google Scholar
[16] Singh J., Singh R., Singh H.: “Repeatability of linear and radial dimension of ABS replicas fabricated by fused deposition modelling and chemical vapor smoothing process: A case study”, Measurement, 94, 2016, p. 5–11, http://dx.doi.org/10.1016/j.measurement.2016.07.064.
Google Scholar
[17] Sobolak M.: “Modeling of cylindrical gears in the CAD environment” (in Polish), Publishing House Rzeszow University of Technology, 2020.
Google Scholar
[18] Tamasag I., Amarandei D., Besliu I.: “Some Insights on Chemical Treatment of 3D Printed Parts”, Materiale Plastice (Mater. Plast.), Year 2022, Volume 59, Issue 1, p. 18-32, https://doi.org/10.37358/MP.22.1.5556.
Google Scholar
[19] Taufik M., Jain P. K.: “Laser assisted finishing process for improved surface finish of fused deposition modelled parts”, Journal of Manufacturing Processes, Volume 30, 2017, p. 161-177, https://doi.org/10.1016/j.jmapro.2017.09.020.
Google Scholar
[20] Yifan Jin, Yi Wan, Bing Zhang, Zhanqiang Liu: “Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties”, Journal of Materials Processing Technology, Volume 240, 2017, p. 233-239, ISSN 0924-0136, https://doi.org/10.1016/j.jmatprotec.2016.10.003.
Google Scholar