Published : 2020-02-28

Removal of Pb(II) ions by means of polyelectrolyte enhanced ultrafiltration

Abstract

This work proposes polyelectrolyte enhanced ultrafiltration to remove Pb(II) from aqueous solutions. Model solutions containing 1-100mg Pb/dm3 were used in the research. Poly(sodium 4-styrenesulfonate) (PSSS), which is a water-soluble polymer containing strong cation-exchange groups, was used as a metal binding agent. The process was conducted on a polysulfone membrane with molecular weight cut-off 60 000. The main parameters determining the effectiveness of lead retention (the polyelectrolyte quantity and solution pH) were examined. High retention coefficients (>0.98) were achieved for pH > 4 and 2.5-5-fold excess of polyelectrolyte to metal. Ultrafiltration concentration of Pb(II) solution (50mg/dm3) was carried out according to the previously determined polymer/metal concentration ratio, and at optimum pH. The lead retention coefficient (R), observed during the process, was within the range of 0.98-0.99. The retentate obtained was used in the next decomplexation-ultrafiltration step (ultrafiltration at pH=1), which made possible the separation of polyelectrolyte (retentate) and the recovery of 85% of concentrated Pb ions (permeate). The residual lead, still remaining in the polymer solution, was diafiltred by a 5-fold amount of water acidified to pH=1.


Details

References

Statistics

Authors

Download files

PDF

Korus, I. (2020). Removal of Pb(II) ions by means of polyelectrolyte enhanced ultrafiltration. Polimery, 55(2), 135–138. Retrieved from https://polimery.ichp.vot.pl/index.php/p/article/view/996