Boboulos M.: “CAD-CAM and Rapid Prototyping Application Evaluation”, PhD and Ventus Publishing Aps, 2010.
Google Scholar
Gdula M.: Metals 2020, 10, 932. https://doi.org/10.3390/met10070932
Google Scholar
Xiao W. et al.: Robotics and Computer-Integrated Manufacturing 2015, 31, 1. https://doi.org/10.1016/j.rcim.2014.06.003
Google Scholar
Thompson M.K. et al.: CIRP Annals 2016, 65, 737. https://doi.org/10.1016/j.cirp.2016.05.004
Google Scholar
Mazurkow A., Sikorska-Czupryna S.: Advances In Manufacturing Science And Technology 2020, 44, 71. https://doi.org/10.2478/amst-2019-0013
Google Scholar
Baggi E.: Adv EngSoftw 2009, 40, 407. https://doi.org/10.1016/j.advengsoft.2008.07.003
Google Scholar
Leal R., Barreiros F.M., Alves L. et al.: International Journal of Advanced Manufacturing Technology 2017, 92, 1671. https://doi.org/10.1007/s00170-017-0239-8
Google Scholar
Lecklider T.: Evaluation Engineering 2017, 56, 16.
Google Scholar
Rokicki P. et al.: Aircraft Engineering and Aerospace Technology. An International Journal 2016, 88, 374. https://doi.org/10.1108/aeat-01-2015-0018
Google Scholar
Raja V., Kiran J.F: “Reverse Engineering An Industrial Perspective”, Springer, New York, NY, USA, 2010.
Google Scholar
Ciocca L. et al.: Medical and Biological Engineering and Computing 2012, 50, 743. https://doi.org/10.1007/s11517-012-0898-4
Google Scholar
Turek P. et al.: Polimery 2020, 65, 510. https://doi.org/10.14314/polimery.2020.7.2
Google Scholar
Garcia-Garcia R., Gonzalez-Palacios M.A.: The International Journal of Advanced Manufacturing Technology 2018, 98, 645. https://doi.org/10.1007/s00170-018-2246-9
Google Scholar
Dziubek T., Oleksy M.: Polimery 2017, 62, 44. https://doi.org/10.14314/polimery.2017.044
Google Scholar
Budzik G., Przeszlowski Ł., Wieczorowski M. et al.: AIP Conference Proceedings 2018, 140005. https://doi.org/10.1063/1.5034997
Google Scholar
Zhong X. et al.: Engineering Structures 2019, 182, 153. https://doi.org/10.1016/j.engstruct.2018.12.065
Google Scholar
Ivanov A.S. et al.: Russian Engineering Research 2015, 35, 571. https://doi.org/10.3103/s1068798x15080067
Google Scholar
Bhonge P.S., Foster B.D., Lankarani H.M.: ASME International Mechanical Engineering Congress and Exposition 2011, 73. https://doi.org/10.1115/imece2011-62905
Google Scholar
ISO 965-1:1998: ISO general purpose metric screw threads — Tolerances — Part 1: Principles and basic data, 1998.
Google Scholar
ISO 262:1998, ISO general purpose metric screw threads — Selected sizes for screws, bolts and nuts, 1998.
Google Scholar
ISO 724:1993, ISO general purpose metric screw threads — Basic dimensions, 1993.
Google Scholar
ISO 68-1:1998, ISO general purpose screw threads — Basic profile — Part 1: Metric screw threads, 1998.
Google Scholar
Leach R. K., Bourell D., Carmignato S. et al.: CIRP Annals 2019, 68, 677. https://doi.org/10.1016/j.cirp.2019.05.004
Google Scholar
Kechagias, J.; Stavropoulos, P.; Koutsomichalis, A. et al.: Advances in Engineering Mechanics and Materials 2014, 61 (accessed on 10 December 2020). http://inase.org/library/2014/santorini/bypaper/MECHANICS/MECHANICS-07.pdf
Google Scholar
Chen L., Lin W.-S., Polido W.D. et al.: Journal of Prosthetic Dentistry 2019, 122, 309. https://doi.org/10.1016/j.prosdent.2019.02.007
Google Scholar
Turek P., Budzik G., Przeszłowski Ł.: Polymers 2020, 12, 2444. https://doi.org/10.3390/polym12112444
Google Scholar
Gibson I., Rosen D.W., Stucker B.: “Additive Manufacturing Technologies”, Springer, New York, USA, 2014.
Google Scholar
Budzik G., Woźniak J., Paszkiewicz A. et al.: Materials 2021, 14, 2202. https://doi.org/10.3390/ma14092202
Google Scholar
Kozior T., Adamczak S.: “Amplitude Surface Texture Parameters of Models Manufactured by FDM Technology”. In The International Symposium for Production Research, Springer: Cham, Switzerland, 2018, pp. 208–217. https://doi.org/10.1007/978-3-319-92267-6_17
Google Scholar
Fox J.C., Moylan S.P., Lane B.M.: Procedia CIRP 2016, 45, 131. https://doi.org/10.1016/j.procir.2016.02.347
Google Scholar
Jamshidinia M., Kovacevic R.: Surface Topography: Metrology and Properties 2015, 3, 014003. https://doi.org/10.1088/2051-672x/3/1/014003
Google Scholar
Turner B.N., Gold S.A.: Rapid Prototyping Journal 2015, 21, 250. https://doi.org/10.1108/rpj-02-2013-0017
Google Scholar
Kawalec A., Magdziak M.: Measurement 2012, 45, 2330. https://doi.org/10.1016/j.measurement.2011.09.022
Google Scholar
Pinto J. M., Arrieta C., Andia M.E. et al.: Medical Engineering and Physics. 2015, 37, 328. https://doi.org/10.1016/j.medengphy.2015.01.009
Google Scholar
Turek P., Budzik G., Sęp J. et al.: Polymers 2020, 12, 3029. https://doi.org/10.3390/polym12123029
Google Scholar
Saqib S., Urbanic J.: “An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts” in “Enabling manufacturing competitiveness and economic sustainability”, Springer, Berlin, Heidelberg, 2012, pp. 293-298.
Google Scholar
Pisula J., Dziubek T., Przeszłowski Ł.: Machine Dynamics Research 2016, 40, 147. http://mdr.simr.pw.edu.pl/index.php/MDR/article/view/200/182
Google Scholar
Turek P., Budzik G.: Polymers 2021, 13(14), 2271. https://doi.org/10.3390/polym13142271
Google Scholar
Brajlih T., Tasic T., Drstvensek I. et al.: Strojniškivestnik-Journal of Mechanical Engineering 2011, 57, 826-833. https://doi.org/10.5545/sv-jme.2010.152
Google Scholar
Bazan A., Turek P., Przeszłowski Ł.: Journal of Mechanical Science and Technology2021, 35, 1167-1176. https://doi.org/10.1007/s12206-021-0230-z
Google Scholar
Michaud M.: “CATIA Core Tools: Computer Aided Three-Dimensional Interactive Application”, McGraw-Hill Education, 2012.
Google Scholar
ISO 4288:2011: Geometrical Product Specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture, 2011.
Google Scholar
ISO 25178-2:2012: Geometrical Product Specifications (GPS) – Surface Texture: Areal – Part 2: Terms, Definitions and Surface Texture Parameters, 2012.
Google Scholar
Bickford J.: “Handbook of Bolts and Bolted Joints”, CRC Press, Boca Raton, 1998
Google Scholar
Childs T.H.C. (ed.): “Mechanical Design. Theory and Applications” (Third Edition), Butterworth-Heinemann, Oxford, 2021.
Google Scholar
Witek A., Grzejda R.: „Sposób modelowania złącza śrubowego a obciążenie robocze śruby”. In „Podstawy Konstrukcji Maszyn. Kierunki Badań i Rozwoju”. Tom III, Wyd. Politechniki Gdańskiej, Gdańsk, 2011, pp. 101-109.
Google Scholar
Witek A.: “Wytrzymałość śruby – wysokość nakrętki” (access 2021.10.29). https://docer.pl/doc/xves588
Google Scholar
Dębski M., Magniszewski M., Bernaczek J. et al.: Polimery 2021, 66, 298. https://doi.org/10.14314/polimery.2021.5.3
Google Scholar
Budzik G., Magniszewski M., Przeszłowski Ł. et al.: Polimery 2018, 63, 830. https://doi.org/10.14314/polimery.2018.11.13
Google Scholar
Oleksy M.Oliwa R., Bulanda K. et al.: Polimery 2021, 66(1), 52. https://doi.org/10.14314/polimery.2021.1.7
Google Scholar
Bączkowski M., Marciniak D., Bieliński M.: Polimery 2021, 66(9), 480. https://doi.org/10.14314/polimery.2021.9.5
Google Scholar
Czyżewski P., Marciniak D., Nowinka B. et al.: Polymers 2022, 14(2), 356. https://doi.org/10.3390/polym14020356
Google Scholar