(1) Andrianov, K. A. Organosilicon Compounds. VIII. Organosilicon Polymeric Products from Phenyltrichlorosilane and Diphenyldichlorosilane. Zhurnal Obshchei Khimii 1947, 17, 1522–1527.
Google Scholar
(2) Scott, D. W. Thermal Rearrangement of Branched-Chain Methylpolysiloxanes. J. Am. Chem. Soc. 1946, 68 (3), 356–358. https://doi.org/10.1021/ja01207a003.
DOI: https://doi.org/10.1021/ja01207a003
Google Scholar
(3) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; 2000.
Google Scholar
(4) Frye, C. L.; Collins, W. T. Oligomeric Silsesquioxanes, (HSiO3/2)n. J. Am. Chem. Soc. 1970, 92 (19), 5586–5588. https://doi.org/10.1021/ja00722a009.
DOI: https://doi.org/10.1021/ja00722a009
Google Scholar
(5) Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110 (4), 2081–2173. https://doi.org/10.1021/cr900201r.
DOI: https://doi.org/10.1021/cr900201r
Google Scholar
(6) Applications of Polyhedral Oligomeric Silsesquioxanes; Hartmann-Thompson, C., Ed.; Advances in Silicon Science; Springer Netherlands: Dordrecht, 2011; Vol. 3. https://doi.org/10.1007/978-90-481-3787-9.
DOI: https://doi.org/10.1007/978-90-481-3787-9
Google Scholar
(7) John, Ł.; Ejfler, J. A Brief Review on Selected Applications of Hybrid Materials Based on Functionalized Cage-like Silsesquioxanes. Polymers 2023, 15 (6), 1452. https://doi.org/10.3390/polym15061452.
DOI: https://doi.org/10.3390/polym15061452
Google Scholar
(8) Loman-Cortes, P.; Binte Huq, T.; Vivero-Escoto, J. L. Use of Polyhedral Oligomeric Silsesquioxane (POSS) in Drug Delivery, Photodynamic Therapy and Bioimaging. Molecules 2021, 26 (21), 6453. https://doi.org/10.3390/molecules26216453.
DOI: https://doi.org/10.3390/molecules26216453
Google Scholar
(9) Yamamoto, K.; Amaike, Y.; Tani, M.; Saito, I.; Kozuma, T.; Kaneko, Y.; Gunji, T. Bridged Organosilica Membranes Incorporating Carboxyl-Functionalized Cage Silsesquioxanes for Water Desalination. J Sol-Gel Sci Technol 2022, 101 (2), 315–322. https://doi.org/10.1007/s10971-021-05703-x.
DOI: https://doi.org/10.1007/s10971-021-05703-x
Google Scholar
(10) Kozuma, T.; Kaneko, Y. Preparation of Carboxyl‐functionalized Polyhedral Oligomeric Silsesquioxane by a Structural Transformation Reaction from Soluble Rod‐like Polysilsesquioxane. J. Polym. Sci. Part A: Polym. Chem. 2019, 57 (24), 2511–2518. https://doi.org/10.1002/pola.29519.
DOI: https://doi.org/10.1002/pola.29519
Google Scholar
(11) Zhang, D.; Kanezashi, M.; Tsuru, T.; Yamamoto, K.; Gunji, T.; Adachi, Y.; Ohshita, J. Preparation of Thermally Stable 3-Glycidyloxypropyl-POSS-Derived Polysilsesquioxane RO Membranes for Water Desalination. Journal of Membrane Science 2023, 668, 121213. https://doi.org/10.1016/j.memsci.2022.121213.
DOI: https://doi.org/10.1016/j.memsci.2022.121213
Google Scholar
(12) Sun, F.; Zeng, H.; Tao, S.; Huang, Y.; Dong, W.; Xing, D. Y. Nanofiltration Membrane Fabrication by the Introduction of Polyhedral Oligomeric Silsesquioxane Nanoparticles: Feasibility Evaluation and the Mechanisms for Breaking “Trade-off” Effect. Desalination 2022, 527, 115515. https://doi.org/10.1016/j.desal.2021.115515.
DOI: https://doi.org/10.1016/j.desal.2021.115515
Google Scholar
(13) Weng, R.; Huang, X.; Liao, D.; Xu, S.; Peng, L.; Liu, X. A Novel Cellulose/Chitosan Composite Nanofiltration Membrane Prepared with Piperazine and Trimesoyl Chloride by Interfacial Polymerization. RSC Adv. 2020, 10 (3), 1309–1318. https://doi.org/10.1039/C9RA09023A.
DOI: https://doi.org/10.1039/C9RA09023A
Google Scholar
(14) Yamamoto, K.; Saito, I.; Amaike, Y.; Nakaya, T.; Ohshita, J.; Gunji, T. Gel Structure and Water Desalination Properties of Divinylpyrazine-Bridged Polysilsesquioxanes. J Sol-Gel Sci Technol 2023. https://doi.org/10.1007/s10971-022-06017-2.
DOI: https://doi.org/10.1007/s10971-022-06017-2
Google Scholar
(15) Yamamoto, K.; Saito, I.; Amaike, Y.; Nakaya, T.; Ohshita, J.; Gunji, T. Preparation and Water Desalination Properties of Bridged Polysilsesquioxane Membranes with Divinylbenzene and Divinylpyridine Units. Polym J 2020, 52 (12), 1367–1374. https://doi.org/10.1038/s41428-020-0386-x.
DOI: https://doi.org/10.1038/s41428-020-0386-x
Google Scholar
(16) Shen, R.; Du, Y.; Yang, X.; Liu, H. Silsesquioxanes-Based Porous Functional Polymers for Water Purification. J Mater Sci 2020, 55 (17), 7518–7529. https://doi.org/10.1007/s10853-020-04541-6.
DOI: https://doi.org/10.1007/s10853-020-04541-6
Google Scholar
(17) Yin, Y.; Guang, Y.; Zhang, H.; Xia, Q.; Wang, C. Synergistic Effect of POSS and Chitosan on Highly Enhancing the Separation Selectivity and Antifouling Capacity of Polyamide Membranes. Desalination 2024, 573, 117215. https://doi.org/10.1016/j.desal.2023.117215.
DOI: https://doi.org/10.1016/j.desal.2023.117215
Google Scholar
(18) Yonezawa, H.; Hirosawa, Y.; Imoto, H.; Naka, K. Polyurethanes with Open‐ and Closed‐cage Silsesquioxanes: Effects of Organic Substituents on Materials Properties. Journal of Polymer Science 2024, 62 (1), 165–173. https://doi.org/10.1002/pol.20230670.
DOI: https://doi.org/10.1002/pol.20230670
Google Scholar
(19) Mohammadbagheri, Z.; Movahedi, B.; Saeedi, S.; Rahmati, A. An Eco-Friendly Composite Hydrogel Based on Covalently Crosslinked Cellulose/Poly (Glycerol Citrate) for Thallium (Ι) Removal from Aqueous Solutions. International Journal of Biological Macromolecules 2024, 254, 127840. https://doi.org/10.1016/j.ijbiomac.2023.127840.
DOI: https://doi.org/10.1016/j.ijbiomac.2023.127840
Google Scholar
(20) Zhang, M.; Liu, H. Fluorescent Porous Hybrid Silsesquioxane-Based Semiconductor Polymer for Sunlight-Driven Gold Recovery with High Efficiency and Selectivity. Sensors and Actuators B: Chemical 2024, 414, 135914. https://doi.org/10.1016/j.snb.2024.135914.
DOI: https://doi.org/10.1016/j.snb.2024.135914
Google Scholar
(21) Zhao, X.; Liu, H. Hybrid Porous Polymers Based on Double‐decker and Cage‐ype Silsesquioxanes for the High‐efficiency Removal of Neonicotinoid Insecticides and Dyes. Journal of Polymer Science 2024, 62 (8), 1639–1646. https://doi.org/10.1002/pol.20230244.
DOI: https://doi.org/10.1002/pol.20230244
Google Scholar
(22) Hirosawa, Y.; Imoto, H.; Naka, K. Polymers with Double‐decker and Side‐opened Cage Silsesquioxanes: Effects of Cage Structures on Materials Properties. Journal of Polymer Science 2023, pol.20230618. https://doi.org/10.1002/pol.20230618.
DOI: https://doi.org/10.1002/pol.20230618
Google Scholar
(23) Rzonsowska, M.; Mituła, K.; Duszczak, J.; Kasperkowiak, M.; Januszewski, R.; Grześkiewicz, A.; Kubicki, M.; Głowacka, D.; Dudziec, B. Unexpected and Frustrating Transformations of Double-Decker Silsesquioxanes. Inorg. Chem. Front. 2022, 9 (2), 379–390. https://doi.org/10.1039/D1QI01363G.
DOI: https://doi.org/10.1039/D1QI01363G
Google Scholar
(24) Mrzygłód, A.; García Armada, M. P.; Rzonsowska, M.; Dudziec, B.; Nowicki, M. Metallodendrimers Unveiled: Investigating the Formation and Features of Double-Decker Silsesquioxane-Based Silylferrocene Dendrimers. Inorg. Chem. 2023, 62 (41), 16932–16942. https://doi.org/10.1021/acs.inorgchem.3c02628.
DOI: https://doi.org/10.1021/acs.inorgchem.3c02628
Google Scholar
(25) Bilyachenko, A. N.; Reis Conceição, N.; Guedes Da Silva, M. F. C.; Mahmudov, K. T.; Shul’pin, G. B.; Pombeiro, A. J. L. Synthesis, Structure and Catalytic Application of Cage Metallasilsesquioxanes; 2024; pp 245–279. https://doi.org/10.1142/9789811283208_0008.
DOI: https://doi.org/10.1142/9789811283208_0008
Google Scholar
(26) Bilyachenko, A. N.; Khrustalev, V. N.; Dorovatovskii, P. V.; Shul’pina, L. S.; Ikonnikov, N. S.; Shubina, E. S.; Lobanov, N. N.; Aliyeva, V. A.; Nunes, A. V. M.; Mahmudov, K. T.; Kozlov, Y. N.; Pombeiro, A. J. L. Fe(III)-Based Phenylsilsesquioxane/Acetylacetonate Complexes: Synthesis, Cage-like Structure, and High Catalytic Activity. Inorg. Chem. 2024, 63 (4), 1909–1918. https://doi.org/10.1021/acs.inorgchem.3c03587.
DOI: https://doi.org/10.1021/acs.inorgchem.3c03587
Google Scholar
(27) Zueva, A. Y.; Bilyachenko, A. N.; Arteev, I. S.; Khrustalev, V. N.; Dorovatovskii, P. V.; Shul’pina, L. S.; Ikonnikov, N. S.; Gutsul, E. I.; Rahimov, K. G.; Shubina, E. S.; Reis Conceição, N.; Mahmudov, K. T.; Guedes Da Silva, M. F. C.; Pombeiro, A. J. L. A Family of Hexacopper Phenylsilsesquioxane/Acetate Complexes: Synthesis, Solvent‐Controlled Cage Structures, and Catalytic Activity. Chemistry A European J 2024, 30 (31), e202401164. https://doi.org/10.1002/chem.202401164.
DOI: https://doi.org/10.1002/chem.202401164
Google Scholar
(28) Félix, G.; Kulakova, A. N.; Sene, S.; Khrustalev, V. N.; Hernández-Rodríguez, M. A.; Shubina, E. S.; Pelluau, T.; Carlos, L. D.; Guari, Y.; Carneiro Neto, A. N.; Bilyachenko, A. N.; Larionova, J. Luminescent Ln3+-Based Silsesquioxanes with a β-Diketonate Antenna Ligand: Toward the Design of Efficient Temperature Sensors. Front. Chem. 2024, 12, 1379587. https://doi.org/10.3389/fchem.2024.1379587.
DOI: https://doi.org/10.3389/fchem.2024.1379587
Google Scholar
(29) Bai, J.; Fan, H.; Ke, Q.; Luo, F.; Chen, J.; Peng, L.; Ding, Y.; Zhang, J.; Zhang, G.; Yang, M. High Performance Epoxy Composites Modified by a Ladder-like Polysilsesquioxane. Composites Communications 2024, 46, 101813. https://doi.org/10.1016/j.coco.2024.101813.
DOI: https://doi.org/10.1016/j.coco.2024.101813
Google Scholar
(30) Grzelczak, R. A.; Władyczyn, A.; Białońska, A.; John, Ł.; Szyszko, B. POSSaxanes: Active-Template Synthesis of Organic–Inorganic Rotaxanes Incorporating Cubic Silsesquioxane Stoppers. Chem. Commun. 2023, 59 (49), 7579–7582. https://doi.org/10.1039/D3CC01706K.
DOI: https://doi.org/10.1039/D3CC01706K
Google Scholar
(31) Ghanbari, H.; Cousins, B. G.; Seifalian, A. M. A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS). Macromol. Rapid Commun. 2011, 32 (14), 1032–1046. https://doi.org/10.1002/marc.201100126.
DOI: https://doi.org/10.1002/marc.201100126
Google Scholar
(32) Buchwald, Z.; Buchwald, T.; Voelkel, A. Hydroxyapatite Modified with Polyhedral Oligomeric Silsesquioxane as a Filler for Dental Resin-Based Composites. Journal of Materials Research 2024, 39 (16), 2286–2294. https://doi.org/10.1557/s43578-024-01385-7.
DOI: https://doi.org/10.1557/s43578-024-01385-7
Google Scholar
(33) Wang, J.; Chen, H.; Liu, H.; Wang, R.; Qin, Z.; Zhu, M. Surface Modifications of Short Quartz Fibers and Their Influence on the Physicochemical Properties and in Vitro Cell Viability of Dental Composites. Dental Materials 2024, 40 (8), e1–e10. https://doi.org/10.1016/j.dental.2024.05.023.
DOI: https://doi.org/10.1016/j.dental.2024.05.023
Google Scholar
(34) Department of Microbiology, Thanjavur Medical College, Thanjavur (TN), India; Ponnusamy, A. Thermally Triggered Drug Delivery by Polyhedral Oligomeric Silsesquioxane Co -Conjugated with Gold as a Nano-Drug Carrier in Cancer Therapy. JMSCR 2024, 12 (01), 80–94. https://doi.org/10.18535/jmscr/v12i01.13.
DOI: https://doi.org/10.18535/jmscr/v12i01.13
Google Scholar
(35) Piorecka, K.; Kurjata, J.; Stanczyk, W. A. Novel Polyhedral Silsesquioxanes [POSS(OH)32] as Anthracycline Nanocarriers—Potential Anticancer Prodrugs. Molecules 2020, 26 (1), 47. https://doi.org/10.3390/molecules26010047.
DOI: https://doi.org/10.3390/molecules26010047
Google Scholar
(36) Zhong, X.; Wei, G.; Liu, B.; Wang, C.; Wang, J.; Lu, Y.; Cui, W.; Guo, H. Polyhedral Oligomeric Silsesquioxane‐Based Nanoparticles for Efficient Chemotherapy of Glioblastoma. Small 2023, 19 (18), 2207248. https://doi.org/10.1002/smll.202207248.
DOI: https://doi.org/10.1002/smll.202207248
Google Scholar
(37) Vieira, E. G.; De Paiva, R. E. F.; Miguel, R. B.; De Oliveira, A. P. A.; Franco De Melo Bagatelli, F.; Oliveira, C. C.; Tuna, F.; Da Costa Ferreira, A. M. An Engineered POSS Drug Delivery System for Copper( II ) Anticancer Metallodrugs in a Selective Application toward Melanoma Cells. Dalton Trans. 2024, 53 (30), 12567–12581. https://doi.org/10.1039/D4DT00535J.
DOI: https://doi.org/10.1039/D4DT00535J
Google Scholar
(38) Celesti, C.; Iannazzo, D.; Espro, C.; Visco, A.; Legnani, L.; Veltri, L.; Visalli, G.; Di Pietro, A.; Bottino, P.; Chiacchio, M. A. Chitosan/POSS Hybrid Hydrogels for Bone Tissue Engineering. Materials 2022, 15 (22), 8208. https://doi.org/10.3390/ma15228208.
DOI: https://doi.org/10.3390/ma15228208
Google Scholar
(39) Laganà, A.; Facciolà, A.; Iannazzo, D.; Celesti, C.; Polimeni, E.; Biondo, C.; Di Pietro, A.; Visalli, G. Promising Materials in the Fight against Healthcare-Associated Infections: Antibacterial Properties of Chitosan-Polyhedral Oligomeric Silsesquioxanes Hybrid Hydrogels. JFB 2023, 14 (8), 428. https://doi.org/10.3390/jfb14080428.
DOI: https://doi.org/10.3390/jfb14080428
Google Scholar
(40) Dogrul, F.; Nawaz, Q.; Elsayed, H.; Liverani, L.; Galusek, D.; Bernardo, E.; Boccaccini, A. R. Polymer-Derived Biosilicate-C Composite Foams: In-Vitro Bioactivity, Biocompatibility and Antibacterial Activity. Journal of the European Ceramic Society 2024, 44 (10), 6124–6134. https://doi.org/10.1016/j.jeurceramsoc.2024.03.006.
DOI: https://doi.org/10.1016/j.jeurceramsoc.2024.03.006
Google Scholar
(41) Teimouri, M.; Mirzaee, M.; Nemati, A.; Salehi, M.; Amoli, A. Polysilsesquioxane Decorated ZIF-8 as a Potential pH-Responsive Vehicle for Topical Delivery and Release of Acyclovir and Tetracycline: Investigation of Blood Compatibility, Cytotoxicity and Antibacterial Properties. International Journal of Biological Macromolecules 2024, 271, 132542. https://doi.org/10.1016/j.ijbiomac.2024.132542.
DOI: https://doi.org/10.1016/j.ijbiomac.2024.132542
Google Scholar
(42) Liu, L.; Ma, S.; Xiao, Z.; Li, J.; Wang, Y.; Lu, Z.; Zhao, Y.; Guo, J. Hydrophilic Silsesquioxane Nanocages Toughened Extracellular Matrix Biomimetic Poly(γ-Glutamic Acid) Multidimensional Self-Polymerizable and Osteogenic Hybrid Hydrogel for Osteoporotic Bone Regeneration. Composites Part B: Engineering 2024, 284, 111713. https://doi.org/10.1016/j.compositesb.2024.111713.
DOI: https://doi.org/10.1016/j.compositesb.2024.111713
Google Scholar
(43) Anjrini, N.; Karabulut, H.; Ulag, S.; Ege, H.; Noberi, C.; Dogan, E.; Sahin, A.; Gunduz, O. 3D-Printed Polylactic Acid (PLA)/Polymethyl Silsesquioxane (PMSQ)-Based Scaffolds Coated with Vitamin E Microparticles for the Application of Wound Healing. emergent mater. 2024. https://doi.org/10.1007/s42247-024-00711-3.
DOI: https://doi.org/10.1007/s42247-024-00711-3
Google Scholar