Ahmed A. Abdelaziz, Tarek E. Elbanna, Noha M. Gamaleldeen, Validated Microbiological And Hplc Methods For The Determination Of Moxifloxacin In Pharmaceutical Preparations And Human Plasma, Brazilian Journal of Microbiology (2012): 1291-1301.
Google Scholar
Avelox, Generic Name(S): Moxifloxacin; https://www.webmd.com/drugs/2/drug-17879/avelox-oral/details.
Google Scholar
Urszula Hubicka, Barbara Øuromska-Witek, Jan Krzek, Maria Walczakand Marek Zylewski; Kinetic And Thermodynamic Studies Of Moxifloxacin Hydrolysis In The Presence And Absence Of Metal Ions In Acidic Solutions, Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 70 No.1 pp. 59-70, 2013.
Google Scholar
Mahmoud M.H.Al Omari, Deema S.Jaafari, Khaldoun A.Al-Sou’od, Adnan A.Badwan, Chapter Seven - Moxifloxacin Hydrochloride
Google Scholar
Profiles of Drug Substances, Excipients and Related Methodology, Volume 39, 2014, Pages 299-431.
Google Scholar
A review of moxifloxacin for the treatment of drug-susceptible tuberculosis, Anushka Naidoo, Kogieleum Naidoo, Helen McIlleron, Sabiha Essack, and Nesri Padayatchi. J Clin Pharmacol. 2017 Nov; 57(11): 1369–1386.doi: 10.1002/jcph.968.
Google Scholar
The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria
Google Scholar
Xian-Zhi Li,a,* Patrick Plésiat,b,* and Hiroshi Nikaido; Clin Microbiol Rev. 2015 Apr; 28(2): 337–418.doi: 10.1128/CMR.00117-14.
Google Scholar
Avelox (Moxifloxacin HCL): Antibiotics, Uses, Dosage, Side Effects, Interactions, Warning.https://www.rxlist.com/avelox-drug.htm#description
Google Scholar
Guerra, F.L.; Paim, C.S.; Steppe, M.; Schapoval, E.E. (2005). Biological assay and liqu tablets. J AOAC Int 88, 1086-1092.
Google Scholar
S.K. Motwani, S. Chopra, F.J. Ahmad, R.K. Khar, Validated spectrophotometric methods for the estimation of moxifloxacin in bulk and pharmaceutical formulations, Spectrochim. Acta A Mol. Biomol. Spectrosc. 68 (2007) 250-256.
Google Scholar
A.A. Elbashir, S.A. Ebraheem, A.H. Elwagee, H.Y. Aboul-Enein, New spectrophotometric methods for the determination of moxifloxacin in pharmaceutical formulations, Acta Chim. Slov. 60 (2013) 159-165.
Google Scholar
M. Kamruzzaman, A.M. Alam, S.H. Lee, D. Ragupathy, Y.H. Kim, S.R. Park, S.H. Kim, Spectrofluorimetric study of the interaction between europium(III) and moxifloxacin in micellar solution and its analytical application, Spectrochim. Acta A Mol. Biomol. Spectrosc. 86 (2012) 375-380.
Google Scholar
M.A.G. Trindade, G.M. da Silva, V.S. Ferreira, Determination of moxifloxacin in tablets and human urine by square-wave adsorptive voltammetry, Microchem. J. 81 (2005) 209-216.
Google Scholar
S.M. Al-Ghannam, Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate, Spectrochim. Acta A Mol. Biomol. Spectrosc. 69 (2008) 1188-1194.
Google Scholar
A.E. Radi, T. Wahdan, Z. Anwar, H. Mostafa, Electrochemical determination of gatifloxacin, moxifloxacin and sparfloxacin fluoroquinolonic antibiotics on glassy carbon electrode in pharmaceutical formulations, Drug Test. Anal. 2 (2010) 397-400.
Google Scholar
Y.H. Xu, D. Li, X.Y. Liu, Y.Z. Li, J. Lu, High performance liquid chromatography assay with ultraviolet detection for moxifloxacin: validation and application to a pharmacokinetic study in Chinese volunteers, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878 (2010) 3437-3441.
Google Scholar
Novel Moxifloxacin Ion Selective Electrodes for Potentiometric Determination of Moxifloxacin in Pure Form and Pharmaceutical Formulations Amir ALHAJ SAKUR 1,*, Mohammed Samr BASSMAJEI 2 , Hashem A. DABBEET 3, International Journal of Academic Scientific Research ISSN: 2272-6446 Volume 3, Issue 4 (November-December 2015), PP 66-75.
Google Scholar
Momin, M.A.M.; Rangnekar, B.; Das, S.C. Development and validation of a RP-HPLC method for simultaneous quantification of bedaquiline [TMC207], moxifloxacin and pyrazinamide in a pharmaceutical powder formulation for inhalation. J. Liq. Chromatogr. 2018, 41, 415–421.
Google Scholar
Czyrski, A.; Sokół, A.; Szałek, E. HPLC method for determination of moxifloxacin in plasma and its application in pharmacokinetic analysis. J. Liq. Chromatogr. 2017, 40, 8–12.
Google Scholar
Wichitnithad, W.; Kiatkumjorn, T.; Jithavech, P.; Thanawattanawanich, P.; Bhuket, P.R.; Rojsitthisak, P. A simple and sensitive HPLC-fluorescence method for the determination of moxifloxacin in human plasma and its application in a pharmacokinetic study. Pharmazie 2018, 73, 625–629.
Google Scholar
Khan, F.U.; Nasir, F.; Iqbal, Z.; Khan, I.; Shahbaz, N.; Hassan, M.; Ullah, F. Simultaneous determination of Moxifloxacin and Ofloxacin in physiological fluids using high performance liquid chromatography with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1017–1018, 120–128.
Google Scholar
L.A. Cruz, R. Hall, Enantiomeric purity assay of moxifloxacin hydrochloride by capillary electrophoresis, J. Pharm. Biomed. Anal. 38 (2005) 8-13.
Google Scholar
B. Raju, M. Ramesh, R.M. Borkar, R. Padiya, S.K. Banerjee and R. Srinivas, Development and validation of liquid chromatography–mass spectrometric method for simultaneous determination of moxifloxacin and ketorolac in rat plasma: application to pharmacokinetic study, Biomed. Chromatogr. 26 (2012) 1341-1347.
Google Scholar
Nguyen, D.T.T.; Guillarme, D.; Rudaz, S.; Veuthey, J.L. Validation of an Ultra-Fast UPLC-UV Method for the Separation of Ant Tuberculosis Tablets. J. Sep. Sci. 2008, 31, 1050–1056.]
Google Scholar
Pranger, A.D.; Alffenaar, J.W.; Wessels, A.M.; Greijdanus, B.; Uges, D.R. Determination of moxifloxacin in human plasma, plasma ultra filtrate and cerebrospinal fluid by a rapid and simple liquid chromatography–tandem mass spectrometry method. J. Anal. Toxicol. 2010, 34, 135–141.
Google Scholar
Vu, D.H.; Koster, R.A.; Alffenaar, J.W.; Brouwers, J.R.; Uges, D.R. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1063–1070.
Google Scholar
Cruz, L.A.; Hall, R. Enantiomeric purity assay of moxifloxacin hydrochloride by capillary electrophoresis. J. Pharm. Biomed. Anal. 2005, 38, 8–13.
Google Scholar
Mahesh Attimarad 1,* , Muhammad Shahzad Chohan 2 and Abdulmalek Ahmed Balgoname 1Simultaneous Determination of Moxifloxacin and Flavoxate by RP-HPLC and Ecofriendly Derivative Spectrophotometry Methods in Formulations, Int. J. Environ. Res. Public Health 2019, 16, 1196,1-15; doi:10.3390/ijerph16071196.
Google Scholar
David Harvey, Potentiometric methods hem.libretexts.org/Courses/Northeastern_University/11%3A_Electrochemical_Methods/11.2%3A_Potentiometric_Methods.
Google Scholar
M.M. Hefnawy, A.M. Homoda, M.A. Abounassif, A.M. Alanazi, A. Al-Majed, G.A. Mostafa, 2014. Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors, Chem. Cent. J. 8, 59.
Google Scholar
L. Tymecki, S. Glab, R. Koncki, Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology, Sensors, 6 (2006) 390-396.
Google Scholar
K.C. Honeychurch, J.P. Hart, Screen-printed electrochemical sensors for monitoring metal pollutants, Trends Analyt. Chem. 22 (2003) 456-469
Google Scholar
M.J. Schoning, A. Simonis, T. Krings, H. Luth, J. Wang, Evaluation of a chip‐based thin‐film/thick‐film sensor hybrid for (bio‐)chemical analysis, Electroanalysis, 14 (2002) 955-958.
Google Scholar
E.Y.Z. Frag, G.G. Mohamed, F.A.N. El-Dien, M.E. Mohamed, Construction and performance characterization of screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pharmaceutical preparations, Analyst, 136 (2011) 332-339.
Google Scholar
E. Khaled, G.G. Mohamed, T. Awad, Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants, Sens. Actuators B, 135 (2008) 74-80.
Google Scholar
L. Svancara, K. Vytras, Preparation and properties of carbon paste electrodes, Chem. Listy, 88 (1994) 138-142.
Google Scholar
E. Bakker, E. Pretsch, P. Bühlmann, Selectivity of potentiometric ion sensors, Anal. Chem. 72 (2000) 1127-1133.
Google Scholar
Polymer composite materials: A comprehensive review; RachidHsissou,RajaaSeghiriaZakari,BenzekriaMiloudiHilali,MohamedRafikaAhmedElharfi,
Google Scholar
Composite Structures, 262 (2021) 113640.doi.org/10.1016/j.compstruct.2021.113640.
Google Scholar
Marturano, Valentina, Cerruti, Pierfrancesco and Ambrogi, Veronica. "Polymer additives" Physical Sciences Reviews, vol. 2, no. 6, 2017, pp. 20160130. https://doi.org/10.1515/psr-2016-0130.
Google Scholar
Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance Krzysztof Maksymiuk , Emilia Stelmach and Agata Michalska, Membranes 2020, 10, 266; doi:10.3390/membranes10100266.
Google Scholar
Alrabiah H, Al-Majed A, Abounassif M, Mostafa GA. Ionophore-based potentiometric PVC membrane sensors for determination of phenobarbitone in pharmaceutical formulations. Acta Pharm. 2016 Dec 1;66(4):503-514. doi: 10.1515/acph-2016-0042. PMID: 27749249.
Google Scholar
J.J. Rippeth, T.D. Gibson, J.P. Hart, I.C. Hartley, G. Nelson, Flow-injection Detector Incorporating a screen-printed disposable amperometric biosensor for monitoring organophosphate pesticides, Analyst, 122 (1997) 1425-1430
Google Scholar
R.P. Buck, E. Lindner, Recommendations for nomenclature of ion selective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem. 66 (1994) 2527-2536
Google Scholar
Y. Umezawa, K. Umezawa, H. Sato, Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KpotA,B values (Technical Report), Pure Appl. Chem. 67 (1995) 507-518 (1995)
Google Scholar
V.V. Egorov, E.A. Zdrachek, V.A. Nazarov, Improved separate solution method for determination of low selectivity coefficients, Anal. Chem. 86 (2014) 3693-3696.
Google Scholar
S.M. Ghoreishi, M. Behpour, M. Nabi, A novel naphazoline-selective membrane sensor and its pharmaceutical applications, Sens. Actuators B Chem. 113 (2006) 963-969.
Google Scholar
A.M. Othman, N.M.H. Rizk, M.S. El-Shahawi, Polymer membrane sensors for sildenafil citrate (Viagra) determination in pharmaceutical preparations, Anal. Chim. Acta, 515 (2004) 303-309.
Google Scholar
JC Miller, JN Miller, Statistics for Analytical Chemistry. 1st edition. England: Ellis Harwood Limited, 1986.
Google Scholar
M.R. Ganjali, Z. Memari, F. Faridbod, P. Norouzi. Quantitative Analysis of Pseudoephedrine in Formulation by Potentiometric Membrane Sensor; Computational Investigation, Int. J. Electrochem. Sci. 3 (2008) 1169-1276
Google Scholar
V.K. Gupta, S. Chandra, R. Mangla, Magnesium-selective electrodes, Sens. Actuators B Chem. 86 (2002) 235-241.
Google Scholar
V.K. Gupta, R. Prasad, A. Kumar, Magnesium-tetrazaporphyrin incorporated PVC matrix as a new material for fabrication of Mg2+ selective potentiometric sensor, Talanta, 63 (2004) 1027-1033.
Google Scholar
H.A. Zamani, G. Rajabzadeh, M.R. Ganjali, Highly selective and sensitive chromium(III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore, Sens. Actuators B Chem. 119 (2006) 41-46.
Google Scholar
Ashour S, Kattan N (2016) New, Simple and Validated RP-HPLC Method for Quality Control of Moxifloxacin. SOJ Pharm Pharm Sci, 3(3), 1-6. DOI: http://dx.doi.org/10.15226/2374-6866/3/3/00145.
Google Scholar
. Limit of Detection A Closer Look at the IUPAC Definition; Gary L. Long and J. D. Winefordner, Anal. Chem. 1983, 55, 07, 712A–724A, https://doi.org/10.1021/ac00258a724].
Google Scholar
A.K. Jain, V.K. Gupta, L.P. Singh, J.R. Raisoni, A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 51 (2006) 2547-2553
Google Scholar
T.S. Ma, S.S.M. Hassan, Organic Analysis Using Ion Selective Electrodes, vol. 1&2, Academic Press, London, 1982.
Google Scholar