Szot, W. Rheological Analysis of 3D Printed Elements of Acrylonitrile Butadiene and Styrene Material Using Multiparameter Ideal Body Models. 3D Printing and Additive Manufacturing 2023, doi:10.1089/3dp.2022.0298.
Google Scholar
Kozior, T.; Kundera, C. Rheological properties of cellular structures manufactured by additive PJM technology. Tehnicki Vjesnik 2021, doi:10.17559/TV-20191007145545.
Google Scholar
Bochnia, J.; Blasiak, M.; Kozior, T. Tensile strength analysis of thin-walled polymer glass fiber reinforced samples manufactured by 3d printing technology. Polymers 2020, 12, 2783, doi:10.3390/polym12122783.
Google Scholar
Vodilka, A.; Koroľ, M.; Kočiško, M.; Zajac, J. Adjusting Surface Models of Cellular Structures for Making Physical Models Using FDM Technology. Polymers 2023, 15, 1198, doi:10.3390/polym15051198.
Google Scholar
Ghazlan, A.; Nguyen, T.; Ngo, T.; Linforth, S.; Le, V.T. Performance of a 3D printed cellular structure inspired by bone. Thin-Walled Structures 2020, 151, 106713, doi:10.1016/j.tws.2020.106713.
Google Scholar
Zhang, X.; Yu, X.; Chen, J.; Zhao, C.; Guan, S.; Fu, Y. Influence Mechanism of the Trabecular and Chamfer Radii on the Three-point Bending Properties of Trabecular Beetle Elytron Plates. Journal of Bionic Engineering 2021, doi:10.1007/s42235-021-0025-z.
Google Scholar
Forés-Garriga, A.; Gómez-Gras, G.; Pérez, M.A. Additively manufactured three-dimensional lightweight cellular solids: Experimental and numerical analysis. Materials & Design 2023, 226, 111641, doi:10.1016/j.matdes.2023.111641.
Google Scholar
Gaur, A.; Chawla, K.; Kiran, R.; Patel, S. Effective thermo-electro-mechanical properties of Menger sponge-like fractal structures: a finite element study. Physica Scripta 2023, 98, 095104, doi:10.1088/1402-4896/ace5f1.
Google Scholar
Płatek, P.; Rajkowski, K.; Cieplak, K.; Sarzyński, M.; Małachowski, J.; Woźniak, R.; Janiszewski, J. Deformation Process of 3D Printed Structures Made from Flexible Material with Different Values of Relative Density. Polymers 2020, 12, 2120, doi:10.3390/polym12092120.
Google Scholar
Mazurkiewicz, M.; Kluczyński, J.; Jasik, K.; Sarzyński, B.; Szachogłuchowicz, I.; Łuszczek, J.; Torzewski, J.; Śnieżek, L.; Grzelak, K.; Małek, M. Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Process. Materials 2022, 15, 5079, doi:10.3390/ma15145079.
Google Scholar
Ullah, A.S.; D’Addona, D.M.; Seto, Y.; Yonehara, S.; Kubo, A. Utilizing Fractals for Modeling and 3D Printing of Porous Structures. Fractal and Fractional 2021, 5, 40, doi:10.3390/fractalfract5020040.
Google Scholar
Haftendorn, D. Fraktale, Chaos, Ordnung. In Mathematik sehen und verstehen; Spektrum Akademischer Verlag: Heidelberg, 2010; pp. 79–116.
Google Scholar
Technical Data Sheet PLA Available online: https://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiKvPS0i4iAAxXgVaQEHbW4DM8QFnoECCYQAQ&url=https%3A%2F%2Fwww.matterhackers.com%2Fr%2F9EBLeA&usg=AOvVaw3AQLWiVDQN6E0md5-VEix7&opi=89978449.
Google Scholar
Li, D.; Luo, C.; Zhou, J.; Dong, L.; Chen, Y.; Liu, G.; Qiao, S. The Role of the Interface of PLA with Thermoplastic Starch in the Nonisothermal Crystallization Behavior of PLA in PLA/Thermoplastic Starch/SiO2 Composites. Polymers 2023, 15, 1579, doi:10.3390/polym15061579.
Google Scholar
Ayrilmis, N.; Nagarajan, R.; Kuzman, M.K. Effects of the Face/Core Layer Ratio on the Mechanical Properties of 3D Printed Wood/Polylactic Acid (PLA) Green Biocomposite Panels with a Gyroid Core. Polymers 2020, 12, 2929, doi:10.3390/polym12122929.
Google Scholar
Shimadzu AGX-V;
Google Scholar
ISO 604 Plastics — Determination of compressive properties.
Google Scholar