Edebali S: “15 - Methods of engineering of biopolymers and biocomposites” in “Advanced Green Materials: Fabrication, Characterization and Applications of Biopolymers and Biocomposites”, (editor Shakeel A.), Woodhead Publishing, Sawston 2021, p. 351, https://doi.org/10.1016/B978-0-12-819988-6.00015-X.
Google Scholar
Thakre R.A., Baxi R.N., Shelke R.S. et al.: International Journal of Research in Engineering, IT and Social Sciences 2018, 8(12), 2018, 56.
Google Scholar
La Mantia F.P., Morreale M., Mohd I.Z.A.: Journal of Applied Polymer Science 2005, 96(83), 1906, https://doi.org/10.1002/app.21623.
Google Scholar
Coutinho F.M.B., Costa T.H.S., Suarez J.C.M. et al: Polymer Testing 2000, 19(6), 625, https://doi.org/10.1016/S0142-9418(99)00034-3.
Google Scholar
Ichazo M.N., Albano C., González J. et al.: Composite Structures 2001, 54(2-3), 207, https://doi.org/10.1016/S0263-8223(01)00089-7.
Google Scholar
Liber-Kneć A., Kuciel S., Dziadur W.: Polimery 2006, 51(7-8), 571.
Google Scholar
Bazan P., Salasińska K., Kuciel S.: Industrial Crops and Products 2021, 164, 113356, https://doi.org/10.1016/j.indcrop.2021.113356.
Google Scholar
Dobrzyńska-Mizera M., Barczewski M.: Przetwórstwo Tworzyw 2014, 5(161), 399.
Google Scholar
Sathish T., Palani K., Natrayan L. et al.: International Journal of Polymer Science 2021, 2021, 8, https://doi.org/10.1155/2021/2462873.
Google Scholar
Kijeński J., Kijeńska M., Osazuwa O.: Polimery 2016, 7–8(61), 465, https://doi.org/10.14314/polimery.2016.467.
Google Scholar
Gelfuso M.V., da Silva P.V.G., Thomazini D.: Materials Research 2011, 14(3), :360, https://doi.org/10.1590/S1516-14392011005000056.
Google Scholar
Barczewski M., Andrzejewski J., Majchrowski R. et al.: Journal of Renewable Materials 2021, 9(5), 841, https://doi.org/10.32604/jrm.2021.014490.
Google Scholar
Kuciel S., Liber-Kneć A., Zajchowski S.: Polimery 2010, 55 718.
Google Scholar
Rahman A., Fehrenbach J., Ulven Ch. et al.: Industrial Crops and Products 2021, 172, 114028, https://doi.org/10.1016/j.indcrop.2021.114028.
Google Scholar
Umoren S.A., Solomon M.M.: “Polypropylene (PP)/Starch-Based Biocomposites and Bionanocomposites” in “Polypropylene-Based Biocomposites and Bionanocomposites”, (editor Visakh P.M., Solomon M.M.), John Wiley & Sons, Hoboken, 2017, p. 55. https://doi.org/10.1002/9781119283621.ch3.
Google Scholar
Fuqua M.A., Huo S., Ulven C.: Polymer Reviews 2012, 52(3), 259, https://doi.org/10.1080/15583724.2012.705409.
Google Scholar
Samujło B.A.: Advances in Science and Technology Research Journal 2020, 14(4), 139, https://doi.org/10.12913/22998624/126971.
Google Scholar
White J.R.: Comptes Rendus Chimie 2006, 9(11-12), 1396, https://doi.org/10.1016/j.crci.2006.07.008.
Google Scholar
Holliday L.: “Composites materials”, Elsevier, 1966.
Google Scholar
Rod M.: “Ageing of Composites”, Woodhead Publishing, Cambridge, 2008.
Google Scholar
Broughton W.R., Maxwell A.S.: “Accelerated Environmental Ageing of Polymeric Materials”, National Physical Laboratory, Middlesex, 2007.
Google Scholar
Brzozowska-Stanuch A., Rabiej S., Stanuch W.: Czasopismo Techniczne. Mechanika 2009, R.106, 43.
Google Scholar
Hedir A., Slimani F., Moudoud M., Lamrous O., Diaham S.: “Thermal ageing effects on polypropylene properties” Materials from 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Richland, WA, USA, October 20 –23, 2019, p. 130.
Google Scholar
Fiebig J., Gahleitner M., Paulik C. et al.: Polymer Testing 1999, 18(4), 257, https://doi.org/10.1016/S0142-9418(98)00023-3.
Google Scholar
Krzyżak A., Prażmo J., Kucharczyk W.: Advanced Materials Research 2014, 1001, 141 Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.1001.141.
Google Scholar
Samujło B.A.: Advances in Science and Technology Research Journal 2020, 14(4), 139, https://doi.org/10.12913/22998624/126971.
Google Scholar
Fotopoulou K.N., Karapanagioti H.K.: “Degradation of Various Plastics in the Environment” in “Hazardous Chemicals Associated with Plastics in the Marine Environment”, Volume 78, (editor Takada H., Karapanagioti H.), Springer, Cham, 2017, p. 71, https://doi.org/10.1007/698_2017_11
Google Scholar
Mannheim V., Simenfalvi Z.: Polymers 2020, 12(9), 1901, https://doi.org/10.3390/polym12091901.
Google Scholar
Moretti C., Junginger M., Shen L.: Conservation and Recycling 2020, 157, 104750, https://doi.org/10.1016/j.resconrec.2020.104750.
Google Scholar
Hofmann T., Visi-Rajczi E., Levente L.: Current Bioactive Compounds 2022, 18(1), 14, https://dx.doi.org/10.2174/1573407217666210215090330.
Google Scholar
Rocha-Guzmán N.E., González-Laredo R.F., Vázquez-Cabral B.D. et al.: “11- Oak Leaves as a New Potential Source for Functional Beverages: Their Antioxidant Capacity and Monomer Flavonoid Composition” in “Functional and Medicinal Beverages”, Volume 11, (editor Grumezescu A.M., Holban A.M.), Academic Press, Cambridge, 2019, p. 381, https://doi.org/10.1016/B978-0-12-816397-9.00011-X.
Google Scholar
Oksanen E., Riikonen J., Kaakinen S. et al.: Global Change Biology 2005, 11(5), 732, https://doi.org/10.1111/j.1365-2486.2005.00938.x.
Google Scholar
Prasad R.B.N., Gülz P.G.: Zeitschrift für Naturforschung C 1990, 45, 81, https://doi.org/10.1515/znc-1990-7-811
Google Scholar
Liu M., Thygesen A., Summerscales J. et al: Industrial Crops and Products 2017, 108, 660, https://doi.org/10.1016/j.indcrop.2017.07.027.
Google Scholar