[1] Ho C.S., Wong C.T.H., Aung T.T. et al.: The Lancet Microbe 2025, 6(1), 100947. https://doi.org/10.1016/j.lanmic.2024.07.010
Google Scholar
[2] Schneider Y.K.: Antibiotics 2021, 10(7), 842. https://doi.org/10.3390/antibiotics10070842
Google Scholar
[3] Elmaidomy A.H., Hisham Shady N., Abdeljawad K.H. et al.: RSC Advance 2022, 12(25), 29078. https://doi.org/10.1039/D2RA04884A
Google Scholar
[4] Ye L., Zhang W., Xiao W. et al.: Pharmacology and Therapeutics 2020, 216, 107671. https://doi.org/10.1016/j.pharmthera.2020.107671
Google Scholar
[5] Kosalec I., Rai M.: “Natural Antimicrobials: An Introduction” in “Promising antimicrobials from Natural Products”, (edit. Kosalec I., Rai M.), Springer, Cham 2022, p. 3. https://doi.org/10.1007/978-3-030-83504-0_1
Google Scholar
[6] Wojtyczka R.D., Dziedzic A., Kępa M. et al.: Molecules, 2014, 19(5), 6583. https://doi.org/10.3390/molecules19056583
Google Scholar
[7] Mun S.H., Joung D.K., Kim Y.S. et al.: Phytomedicine 2013, 20(8-9), 714. http://doi.org/10.1016/j.phymed.2013.02.006
Google Scholar
[8] Natarajan P., Katta S., Andrei I. et al.: Phytomedicine 2008, 15(3), 194. https://doi.org/10.1016/j.phymed.2007.10.008
Google Scholar
[9] Wang L., Zhou F., Xu M. et al.: Research Square 2020, PREPRINT (Version 2). https://doi.org/10.21203/rs.2.9640/v2
Google Scholar
[10] Peng L., Kang S., Yin Z. et al.: International Journal of Clinical and Experimental Pathology 2015, 8, 5217.
Google Scholar
[11] Olewnik-Kruszkowska E., Ferri M., Cadeira M.C. et al.: Polymers 2024, 16(11), 1577. https://doi.org/10.3390/polym16111577
Google Scholar
[12] Nguyen T.L.A., Bhattacharya D.: Molecules 2022, 27, 2494. https://doi.org/10.3390/molecules27082494
Google Scholar
[13] Jaisinghani R.N.: Microbiology Research 2017, 8(1), 6877. https://doi.org/10.4081/mr.2017.6877
Google Scholar
[14] Taikaisi-Kikuni N.B., Schilcher H.: Planta Medica 1994, 60(3), 222. https://doi.org/10.1055/s-2006-959463
Google Scholar
[15] Lima V., Oliveira-Tintino C.D.M., Santos E.S. et al.: Microbial Pathogenesis 2016, 99, 56. https://doi.org/10.1016/j.micpath.2016.08.004
Google Scholar
[16] Silva de Campos S., de Oliveira A., Moreira T.F.M. et al.: Food Packaging and Shelf Life 2019, 22, 100424. https://doi.org/10.1016/j.fpsl.2019.100424
Google Scholar
[17] Bortoluzzi C., Menten J.F.M., Silviera H. et al.: The Journal of Applied Poultry Research 2016, 25(2), 191. https://doi.org/10.3382/japr/pfw001
Google Scholar
[18] Bogdanova K., Röderova M., Kolar M. et al.: Research in Microbiology 2018, 169(3), 127. https://doi.org/10.1016/j.resmic.2017.12.005
Google Scholar
[19] Indriyati., Dara F., Primadona I. et al.: Journal of Polymer Research 2021, 28, 70. https://doi.org/10.1007/s10965-020-02328-6
Google Scholar
[20] Khubiev O.M., Egorov A.R., Kirichuk A.A. et al.: International Journal of Molecular Sciences, 2023, 24(13), 10738. https://doi.org/10.3390/ijms241310738
Google Scholar
[21] Day B.P.F.: “Modified atmosphere and active packaging of chilled foods” in “Chilled Foods. A Comprehensive Guide”, (edit. Brown M.), Woodhead Publishing Limited, Sawston 2008, p. 158
Google Scholar
[22] Berk Z.: “Food Process Engineering and Technology”, Academic Press, Cambridge 2018, p. 625.
Google Scholar
[23] Karahaliloğlu Z., Hazer B.: Journal of Food Science 2024, 89(10), 6575. https://doi.org/10.1111/1750-3841.17333
Google Scholar
[24] Iqbal M.: IOP Conference Series: Earth and Environmental Science 2023, 1230, 012184. https://doi.org/10.1088/1755-1315/1230/1/012184
Google Scholar
[25] Barbosa-Pereira L., Aurrekoetxea G.P., Angulo I. et al.: Meat Science 2014, 97(2), 249. https://doi.org/10.1016/j.meatsci.2014.02.006
Google Scholar
[26] Karimnezhad F., Razavilar V., Anvar A.A. et al.: Journal of Nutrition and Food Security 2019, 4(4), 236. https://doi.org/10.18502/jnfs.v4i4.1720
Google Scholar
[27] Balouiri M., Sadiki M., Ibnsouda S.K.: Journal of Pharmaceutical Analysis 2016, 6(2), 71. https://doi.org/10.1016/j.jpha.2015.11.005
Google Scholar
[28] Li K., Zhong W., Li P. et al.: International Journal of Biological Macromolecules 2023, 252, 126281. https://doi.org/10.1016/j.ijbiomac.2023.126281
Google Scholar
[29] Horváth Gy., Bencsik T., Ács K. et al.: “Sensitivity of ESBL-Producing Gram-Negative Bacteria to Essential Oils, Plant Extracts, and Their Isolated Compounds” in “Antibiotic Resistance. Mechanisms and New Antimicrobial Approaches”, (edit. Kon K., Rai M.), Academic Press, Cambridge 2016, p. 239.
Google Scholar
[30] Wu C., Sun J., Lu Y. et al.: International Journal of Biological Macromolecules 2019, 132, 385. https://doi.org/10.1016/j.ijbiomac.2019.03.133 1
Google Scholar
[31] Hossain T.J.: European Journal of Microbiology and Immunology 2024, 14(2), 97. https://doi.org/10.1556/1886.2024.00035
Google Scholar
[32] https://biologyinsights.com/broth-dilution-methods-for-accurate-antimicrobial-testing/ (access date 14.01.2025)
Google Scholar
[33] Łopusiewicz Ł., Zdanowicz M., Macieja S. et al.: Polymers 2021, 13(11), 1798. https://doi.org/10.3390/polym13111798
Google Scholar
[34] Alkarri S., Bin Saad H., Soliman M.: Polymers 2024, 16(6), 771. https://doi.org/10.3390/polym16060771
Google Scholar
[35] Yap P.S.X., Yusoff K., Lim S.-H.E. et al.: Processes, 2021, 9(4), 595. https://doi.org/10.3390/pr9040595
Google Scholar
[36] Mukhtar T. A., Wright G.D.: Chemical Reviews 2005, 105(2), 529. https://doi.org/10.1021/cr030110z
Google Scholar
[37] Hong Y., Zeng J., Wang X., Drlica K., Zhao X.: Proceedings of the National Academy of Sciences 2019, 116(20), 10064. https://doi.org/10.1073/pnas.1901730116
Google Scholar